-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_vgg.py
52 lines (45 loc) · 1.62 KB
/
test_vgg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import caffe
import numpy as np
import time
#with open("/home/haichen/datasets/MITPlaces/trainvalsplit_places205/val_places205.csv", "r") as f:
with open("/home/haichen/datasets/imagenet/meta/2012/val_caffe.txt", "r") as f:
lines = map(lambda x:x.strip(), f.readlines())
MODEL_FILE = "/home/syhan/vggnet/VGG_ILSVRC_19_layers.prototxt"
PRETRAINED = "/home/syhan/vggnet/VGG_ILSVRC_19_layers.caffemodel"
caffe_dir = "../caffe"
net = caffe.Classifier(MODEL_FILE, PRETRAINED,
mean=np.load(caffe_dir + '/python/caffe/imagenet/ilsvrc_2012_mean.npy'),
gpu=True, channel_swap=(2,1,0), image_dims=(256,256), raw_scale=255, batch=32)
#gpu=True, channel_swap=(2,1,0), raw_scale=255, image_dims=(256,256))
caffe.set_mode_gpu()
caffe.set_phase_test()
import os
IMAGE_PATH = "/home/haichen/datasets/imagenet/ILSVRC2012/val"
res = []
lcnt = 0
BATCH = 256
rr = []
#BATCH = 256
beg = time.time()
for i in range(len(lines)/BATCH+1):
images = []
for line in lines[i*BATCH:(i+1)*BATCH]:
sp = line.split()
path = os.path.join(IMAGE_PATH, sp[0])
images.append( caffe.io.load_image(path) )
images = np.asarray(images)
print(images.shape)
#prediction = net.forward_all(data=np.asarray(images))
prediction = net.predict(images, True)
cnt = 0
for line in lines[i*BATCH:(i+1)*BATCH]:
sp = line.strip().split()
rr.append( (prediction[cnt].argmax(), sp[1]) )
res.append(prediction[cnt].argmax() == int(sp[1]))
cnt += 1
lcnt += 1
print(str(lcnt*BATCH) + "/" + str(len(lines)))
break
end = time.time()
print(sum(res)/float(len(res)))
print(end-beg)