-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
97 lines (87 loc) · 3.18 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
from wsgiref import simple_server
from flask import Flask, request, render_template,send_file
from flask import Response
import os
from flask_cors import CORS, cross_origin
from prediction_Validation_Insertion import pred_validation
from trainingModel import trainModel
from training_Validation_Insertion import train_validation
import flask_monitoringdashboard as dashboard
from predictFromModel import prediction
import json
os.putenv('LANG', 'en_US.UTF-8')
os.putenv('LC_ALL', 'en_US.UTF-8')
app = Flask(__name__)
dashboard.bind(app)
CORS(app)
app.config['UPLOAD_FOLDER'] = "Uploaded_files"
@app.route("/", methods=['GET'])
@cross_origin()
def home():
return render_template('index.html')
@app.route("/predict", methods=['POST'])
@cross_origin()
def predictRouteClient():
try:
if request.method == "POST":
file_obj = request.files['file']
if file_obj.filename != '':
file_obj.save(os.path.join(app.config['UPLOAD_FOLDER'],file_obj.filename))
path = "./Uploaded_files"
else:
path = "./Prediction_Batch_files"
pred_val = pred_validation(path) #object initialization
pred_val.prediction_validation() #calling the prediction_validation function
pred = prediction(path) #object initialization
# predicting for dataset present in database
path= pred.predictionFromModel()
return render_template("prediction.html", message="Prediction file created")
#return Response("Prediction File created at !!!" +str(path) +'and few of the predictions are '+str(json.loads(json_predictions) ))
except ValueError:
return render_template("prediction.html", message="Error Occurred! %s" % ValueError)
except KeyError:
return render_template("prediction.html", message="Error Occurred! %s" % KeyError)
except Exception as e:
return render_template("prediction.html", message="Error Occurred! %s" % e)
# @app.route("/train", methods=['POST'])
# @cross_origin()
# def trainRouteClient():
#
# try:
# if request.json['folderPath'] is not None:
# path = request.json['folderPath']
#
# train_valObj = train_validation(path) #object initialization
#
# train_valObj.train_validation()#calling the training_validation function
#
#
# trainModelObj = trainModel() #object initialization
# trainModelObj.trainingModel() #training the model for the files in the table
#
#
# except ValueError:
#
# return Response("Error Occurred! %s" % ValueError)
#
# except KeyError:
#
# return Response("Error Occurred! %s" % KeyError)
#
# except Exception as e:
#
# return Response("Error Occurred! %s" % e)
# return Response("Training successfull!!")
@app.route("/download")
@cross_origin()
def download_file():
path = "Prediction_Output_File/Predictions.csv"
return send_file(path,as_attachment=True)
port = int(os.getenv("PORT",5000))
if __name__ == "__main__":
# host = '0.0.0.0'
# #port = 5000
# httpd = simple_server.make_server(host, port, app)
# # print("Serving on %s %d" % (host, port))
# httpd.serve_forever()
app.run()