-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3rd_Model_DBroRace.py
91 lines (67 loc) · 2.77 KB
/
3rd_Model_DBroRace.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import math
def reward_function(params):
# Example of rewarding the agent to follow center line
# Read input parameters
track_width = params['track_width']
distance_from_center = params['distance_from_center']
abs_steering = abs(params['steering_angle'])
all_wheels_on_track = params['all_wheels_on_track']
speed = params['speed']
waypoints = params['waypoints']
closest_waypoints = params['closest_waypoints']
heading = params['heading']
# Calculate 3 markers that are at varying distances away from the center line
#Distance from centre
marker_1 = 0.1 * track_width
marker_2 = 0.25 * track_width
marker_3 = 0.5 * track_width
# Give higher reward if the car is closer to center line and vice versa
if distance_from_center <= marker_1:
reward = 1.8
elif distance_from_center <= marker_2:
reward = 0.5
elif distance_from_center <= marker_3:
reward = 0.1
else:
reward = 1e-3 # likely crashed/ close to off track
#steering angle
ABS_STEERING_THRESHOLD = 3
if abs_steering > ABS_STEERING_THRESHOLD:
#penalty
reward *= 0.8
## Set the speed threshold based your action space
SPEED_THRESHOLD = 1.0
if not all_wheels_on_track:
# Penalize if the car goes off track
reward = 1e-3
elif speed < SPEED_THRESHOLD:
# Penalize if the car goes too slow
reward = 0.7
else:
# High reward if the car stays on track and goes fast
reward = 2.0
# Initialize the reward with typical value
reward = 1.3
# Calculate the direction of the center line based on the closest waypoints
next_point = waypoints[closest_waypoints[1]]
prev_point = waypoints[closest_waypoints[0]]
# Calculate the direction in radius, arctan2(dy, dx), the result is (-pi, pi) in radians
track_direction = math.atan2(next_point[1] - prev_point[1], next_point[0] - prev_point[0])
# Convert to degree
track_direction = math.degrees(track_direction)
# Calculate the difference between the track direction and the heading direction of the car
direction_diff = abs(track_direction - heading)
if direction_diff > 180:
direction_diff = 360 - direction_diff
# Penalize the reward if the difference is too large
DIRECTION_THRESHOLD = 3.0
if direction_diff > DIRECTION_THRESHOLD:
reward *= 0.5
## Calculate the distance from each border
distance_from_border = 0.5 * track_width - distance_from_center
# Reward higher if the car stays inside the track borders
if distance_from_border >= 0.25:
reward = 1.8
else:
reward = 1e-3 # Low reward if too close to the border or goes off the track
return float(reward)