-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
63 lines (54 loc) · 1.87 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import streamlit as st
import pickle
import numpy as np
import pandas as pd
import requests
from PIL import Image
def fetch_poster(movie_id):
url = "https://api.themoviedb.org/3/movie/{}?api_key=32e52ea8343bb8b31927e96ae77d6295".format(movie_id)
data = requests.get(url)
data = data.json()
poster_path = data['poster_path']
full_path = "https://image.tmdb.org/t/p/w500/" + poster_path
return full_path
def recommend(movie):
movie_index = np.where(movies_title==movie)
distances = similarity[movie_index].flatten().tolist()
movie_list = sorted(enumerate(distances), reverse= True, key= lambda x:x[1])[1:6]
recommended = []
recommended_movie_posters = []
for i in movie_list:
recommended_movie_posters.append(fetch_poster(movie_id[i[0]]))
recommended.append(movies_title[i[0]])
return recommended, recommended_movie_posters
primaryColor="#F63366"
backgroundColor="#FFFFFF"
secondaryBackgroundColor="#F0F2F6"
textColor="#262730"
font="sans serif"
st.title('Movie Recommender System ')
movies = pickle.load(open('movies.pkl','rb'))
movie_overview = movies['tags'].values
movie_id = movies['movie_id'].values
movies_title = movies['title'].values
similarity = pickle.load(open('similarity.pkl','rb'))
option = st.selectbox('Select a Movie from the dropdown',(movies_title))
st.write('You selected:', option)
if st.button('Show Recommendation'):
names,posters = recommend(option)
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
st.text(names[0])
st.image(posters[0])
with col2:
st.text(names[1])
st.image(posters[1])
with col3:
st.text(names[2])
st.image(posters[2])
with col4:
st.text(names[3])
st.image(posters[3])
with col5:
st.text(names[4])
st.image(posters[4])