-
Notifications
You must be signed in to change notification settings - Fork 100
/
Copy pathStrict.hs
473 lines (424 loc) · 16.4 KB
/
Strict.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
{-# LANGUAGE BangPatterns, CPP, PatternGuards #-}
#if __GLASGOW_HASKELL__ >= 702
{-# LANGUAGE Trustworthy #-}
#endif
------------------------------------------------------------------------
-- |
-- Module : Data.HashMap.Strict
-- Copyright : 2010-2012 Johan Tibell
-- License : BSD-style
-- Maintainer : [email protected]
-- Stability : provisional
-- Portability : portable
--
-- A map from /hashable/ keys to values. A map cannot contain
-- duplicate keys; each key can map to at most one value. A 'HashMap'
-- makes no guarantees as to the order of its elements.
--
-- The implementation is based on /hash array mapped tries/. A
-- 'HashMap' is often faster than other tree-based set types,
-- especially when key comparison is expensive, as in the case of
-- strings.
--
-- Many operations have a average-case complexity of /O(log n)/. The
-- implementation uses a large base (i.e. 16) so in practice these
-- operations are constant time.
module Data.HashMap.Strict
(
-- * Strictness properties
-- $strictness
HashMap
-- * Construction
, empty
, singleton
-- * Basic interface
, HM.null
, size
, HM.member
, HM.lookup
, lookupDefault
, (!)
, insert
, insertWith
, delete
, adjust
, update
, alter
-- * Combine
-- ** Union
, union
, unionWith
, unions
, unionsWith
-- * Transformations
, map
, mapWithKey
, traverseWithKey
-- * Difference and intersection
, difference
, intersection
, intersectionWith
, intersectionWithKey
-- * Folds
, foldl'
, foldlWithKey'
, HM.foldr
, foldrWithKey
-- * Filter
, HM.filter
, filterWithKey
, mapMaybe
, mapMaybeWithKey
-- * Conversions
, keys
, elems
-- ** Lists
, toList
, fromList
, fromListWith
) where
import Data.Bits ((.&.), (.|.))
import qualified Data.List as L
import Data.Hashable (Hashable)
import Prelude hiding (map)
import qualified Data.HashMap.Array as A
import qualified Data.HashMap.Base as HM
import Data.HashMap.Base hiding (
alter, adjust, fromList, fromListWith, insert, insertWith, intersectionWith,
intersectionWithKey, map, mapWithKey, mapMaybe, mapMaybeWithKey, singleton,
update, unionWith)
import Data.HashMap.Unsafe (runST)
-- $strictness
--
-- This module satisfies the following strictness properties:
--
-- 1. Key arguments are evaluated to WHNF;
--
-- 2. Keys and values are evaluated to WHNF before they are stored in
-- the map.
------------------------------------------------------------------------
-- * Construction
-- | /O(1)/ Construct a map with a single element.
singleton :: (Hashable k) => k -> v -> HashMap k v
singleton k !v = HM.singleton k v
------------------------------------------------------------------------
-- * Basic interface
-- | /O(log n)/ Associate the specified value with the specified
-- key in this map. If this map previously contained a mapping for
-- the key, the old value is replaced.
insert :: (Eq k, Hashable k) => k -> v -> HashMap k v -> HashMap k v
insert k !v = HM.insert k v
{-# INLINABLE insert #-}
-- | /O(log n)/ Associate the value with the key in this map. If
-- this map previously contained a mapping for the key, the old value
-- is replaced by the result of applying the given function to the new
-- and old value. Example:
--
-- > insertWith f k v map
-- > where f new old = new + old
insertWith :: (Eq k, Hashable k) => (v -> v -> v) -> k -> v -> HashMap k v
-> HashMap k v
insertWith f k0 v0 m0 = go h0 k0 v0 0 m0
where
h0 = hash k0
go !h !k x !_ Empty = leaf h k x
go h k x s (Leaf hy l@(L ky y))
| hy == h = if ky == k
then leaf h k (f x y)
else x `seq` (collision h l (L k x))
| otherwise = x `seq` runST (two s h k x hy ky y)
go h k x s (BitmapIndexed b ary)
| b .&. m == 0 =
let ary' = A.insert ary i $! leaf h k x
in bitmapIndexedOrFull (b .|. m) ary'
| otherwise =
let st = A.index ary i
st' = go h k x (s+bitsPerSubkey) st
ary' = A.update ary i $! st'
in BitmapIndexed b ary'
where m = mask h s
i = sparseIndex b m
go h k x s (Full ary) =
let st = A.index ary i
st' = go h k x (s+bitsPerSubkey) st
ary' = update16 ary i $! st'
in Full ary'
where i = index h s
go h k x s t@(Collision hy v)
| h == hy = Collision h (updateOrSnocWith f k x v)
| otherwise = go h k x s $ BitmapIndexed (mask hy s) (A.singleton t)
{-# INLINABLE insertWith #-}
-- | In-place update version of insertWith
unsafeInsertWith :: (Eq k, Hashable k) => (v -> v -> v) -> k -> v -> HashMap k v
-> HashMap k v
unsafeInsertWith f k0 v0 m0 = runST (go h0 k0 v0 0 m0)
where
h0 = hash k0
go !h !k x !_ Empty = return $! leaf h k x
go h k x s (Leaf hy l@(L ky y))
| hy == h = if ky == k
then return $! leaf h k (f x y)
else do
let l' = x `seq` (L k x)
return $! collision h l l'
| otherwise = two s h k x hy ky y
go h k x s t@(BitmapIndexed b ary)
| b .&. m == 0 = do
ary' <- A.insertM ary i $! leaf h k x
return $! bitmapIndexedOrFull (b .|. m) ary'
| otherwise = do
st <- A.indexM ary i
st' <- go h k x (s+bitsPerSubkey) st
A.unsafeUpdateM ary i st'
return t
where m = mask h s
i = sparseIndex b m
go h k x s t@(Full ary) = do
st <- A.indexM ary i
st' <- go h k x (s+bitsPerSubkey) st
A.unsafeUpdateM ary i st'
return t
where i = index h s
go h k x s t@(Collision hy v)
| h == hy = return $! Collision h (updateOrSnocWith f k x v)
| otherwise = go h k x s $ BitmapIndexed (mask hy s) (A.singleton t)
{-# INLINABLE unsafeInsertWith #-}
-- | /O(log n)/ Adjust the value tied to a given key in this map only
-- if it is present. Otherwise, leave the map alone.
adjust :: (Eq k, Hashable k) => (v -> v) -> k -> HashMap k v -> HashMap k v
adjust f k0 m0 = go h0 k0 0 m0
where
h0 = hash k0
go !_ !_ !_ Empty = Empty
go h k _ t@(Leaf hy (L ky y))
| hy == h && ky == k = leaf h k (f y)
| otherwise = t
go h k s t@(BitmapIndexed b ary)
| b .&. m == 0 = t
| otherwise = let st = A.index ary i
st' = go h k (s+bitsPerSubkey) st
ary' = A.update ary i $! st'
in BitmapIndexed b ary'
where m = mask h s
i = sparseIndex b m
go h k s (Full ary) =
let i = index h s
st = A.index ary i
st' = go h k (s+bitsPerSubkey) st
ary' = update16 ary i $! st'
in Full ary'
go h k _ t@(Collision hy v)
| h == hy = Collision h (updateWith f k v)
| otherwise = t
{-# INLINABLE adjust #-}
-- | /O(log n)/ The expression (@'update' f k map@) updates the value @x@ at @k@,
-- (if it is in the map). If (f k x) is @'Nothing', the element is deleted.
-- If it is (@'Just' y), the key k is bound to the new value y.
update :: (Eq k, Hashable k) => (a -> Maybe a) -> k -> HashMap k a -> HashMap k a
update f = alter (>>= f)
{-# INLINABLE update #-}
-- | /O(log n)/ The expression (@'alter' f k map@) alters the value @x@ at @k@, or
-- absence thereof. @alter@ can be used to insert, delete, or update a value in a
-- map. In short : @'lookup' k ('alter' f k m) = f ('lookup' k m)@.
alter :: (Eq k, Hashable k) => (Maybe v -> Maybe v) -> k -> HashMap k v -> HashMap k v
alter f k m =
case f (HM.lookup k m) of
Nothing -> delete k m
Just v -> insert k v m
{-# INLINABLE alter #-}
------------------------------------------------------------------------
-- * Combine
-- | /O(n+m)/ The union of two maps. If a key occurs in both maps,
-- the provided function (first argument) will be used to compute the result.
unionWith :: (Eq k, Hashable k) => (v -> v -> v) -> HashMap k v -> HashMap k v
-> HashMap k v
unionWith f = go 0
where
-- empty vs. anything
go !_ t1 Empty = t1
go _ Empty t2 = t2
-- leaf vs. leaf
go s t1@(Leaf h1 l1@(L k1 v1)) t2@(Leaf h2 l2@(L k2 v2))
| h1 == h2 = if k1 == k2
then leaf h1 k1 (f v1 v2)
else collision h1 l1 l2
| otherwise = goDifferentHash s h1 h2 t1 t2
go s t1@(Leaf h1 (L k1 v1)) t2@(Collision h2 ls2)
| h1 == h2 = Collision h1 (updateOrSnocWith f k1 v1 ls2)
| otherwise = goDifferentHash s h1 h2 t1 t2
go s t1@(Collision h1 ls1) t2@(Leaf h2 (L k2 v2))
| h1 == h2 = Collision h1 (updateOrSnocWith (flip f) k2 v2 ls1)
| otherwise = goDifferentHash s h1 h2 t1 t2
go s t1@(Collision h1 ls1) t2@(Collision h2 ls2)
| h1 == h2 = Collision h1 (updateOrConcatWith f ls1 ls2)
| otherwise = goDifferentHash s h1 h2 t1 t2
-- branch vs. branch
go s (BitmapIndexed b1 ary1) (BitmapIndexed b2 ary2) =
let b' = b1 .|. b2
ary' = unionArrayBy (go (s+bitsPerSubkey)) b1 b2 ary1 ary2
in bitmapIndexedOrFull b' ary'
go s (BitmapIndexed b1 ary1) (Full ary2) =
let ary' = unionArrayBy (go (s+bitsPerSubkey)) b1 fullNodeMask ary1 ary2
in Full ary'
go s (Full ary1) (BitmapIndexed b2 ary2) =
let ary' = unionArrayBy (go (s+bitsPerSubkey)) fullNodeMask b2 ary1 ary2
in Full ary'
go s (Full ary1) (Full ary2) =
let ary' = unionArrayBy (go (s+bitsPerSubkey)) fullNodeMask fullNodeMask
ary1 ary2
in Full ary'
-- leaf vs. branch
go s (BitmapIndexed b1 ary1) t2
| b1 .&. m2 == 0 = let ary' = A.insert ary1 i t2
b' = b1 .|. m2
in bitmapIndexedOrFull b' ary'
| otherwise = let ary' = A.updateWith' ary1 i $ \st1 ->
go (s+bitsPerSubkey) st1 t2
in BitmapIndexed b1 ary'
where
h2 = leafHashCode t2
m2 = mask h2 s
i = sparseIndex b1 m2
go s t1 (BitmapIndexed b2 ary2)
| b2 .&. m1 == 0 = let ary' = A.insert ary2 i $! t1
b' = b2 .|. m1
in bitmapIndexedOrFull b' ary'
| otherwise = let ary' = A.updateWith' ary2 i $ \st2 ->
go (s+bitsPerSubkey) t1 st2
in BitmapIndexed b2 ary'
where
h1 = leafHashCode t1
m1 = mask h1 s
i = sparseIndex b2 m1
go s (Full ary1) t2 =
let h2 = leafHashCode t2
i = index h2 s
ary' = update16With' ary1 i $ \st1 -> go (s+bitsPerSubkey) st1 t2
in Full ary'
go s t1 (Full ary2) =
let h1 = leafHashCode t1
i = index h1 s
ary' = update16With' ary2 i $ \st2 -> go (s+bitsPerSubkey) t1 st2
in Full ary'
leafHashCode (Leaf h _) = h
leafHashCode (Collision h _) = h
leafHashCode _ = error "leafHashCode"
goDifferentHash s h1 h2 t1 t2
| m1 == m2 = BitmapIndexed m1 (A.singleton $! go (s+bitsPerSubkey) t1 t2)
| m1 < m2 = BitmapIndexed (m1 .|. m2) (A.pair t1 t2)
| otherwise = BitmapIndexed (m1 .|. m2) (A.pair t2 t1)
where
m1 = mask h1 s
m2 = mask h2 s
{-# INLINE unionWith #-}
------------------------------------------------------------------------
-- * Transformations
-- | /O(n)/ Transform this map by applying a function to every value.
mapWithKey :: (k -> v1 -> v2) -> HashMap k v1 -> HashMap k v2
mapWithKey f = go
where
go Empty = Empty
go (Leaf h (L k v)) = leaf h k (f k v)
go (BitmapIndexed b ary) = BitmapIndexed b $ A.map' go ary
go (Full ary) = Full $ A.map' go ary
go (Collision h ary) =
Collision h $ A.map' (\ (L k v) -> let !v' = f k v in L k v') ary
{-# INLINE mapWithKey #-}
-- | /O(n)/ Transform this map by applying a function to every value.
map :: (v1 -> v2) -> HashMap k v1 -> HashMap k v2
map f = mapWithKey (const f)
{-# INLINE map #-}
------------------------------------------------------------------------
-- * Filter
-- | /O(n)/ Transform this map by applying a function to every value
-- and retaining only some of them.
mapMaybeWithKey :: (k -> v1 -> Maybe v2) -> HashMap k v1 -> HashMap k v2
mapMaybeWithKey f = filterMapAux onLeaf onColl
where onLeaf (Leaf h (L k v)) | Just v' <- f k v = Just (leaf h k v')
onLeaf _ = Nothing
onColl (L k v) | Just v' <- f k v = Just (L k v')
| otherwise = Nothing
{-# INLINE mapMaybeWithKey #-}
-- | /O(n)/ Transform this map by applying a function to every value
-- and retaining only some of them.
mapMaybe :: (v1 -> Maybe v2) -> HashMap k v1 -> HashMap k v2
mapMaybe f = mapMaybeWithKey (const f)
{-# INLINE mapMaybe #-}
-- TODO: Should we add a strict traverseWithKey?
------------------------------------------------------------------------
-- * Difference and intersection
-- | /O(n+m)/ Intersection of two maps. If a key occurs in both maps
-- the provided function is used to combine the values from the two
-- maps.
intersectionWith :: (Eq k, Hashable k) => (v1 -> v2 -> v3) -> HashMap k v1
-> HashMap k v2 -> HashMap k v3
intersectionWith f a b = foldlWithKey' go empty a
where
go m k v = case HM.lookup k b of
Just w -> insert k (f v w) m
_ -> m
{-# INLINABLE intersectionWith #-}
-- | /O(n+m)/ Intersection of two maps. If a key occurs in both maps
-- the provided function is used to combine the values from the two
-- maps.
intersectionWithKey :: (Eq k, Hashable k) => (k -> v1 -> v2 -> v3)
-> HashMap k v1 -> HashMap k v2 -> HashMap k v3
intersectionWithKey f a b = foldlWithKey' go empty a
where
go m k v = case HM.lookup k b of
Just w -> insert k (f k v w) m
_ -> m
{-# INLINABLE intersectionWithKey #-}
------------------------------------------------------------------------
-- ** Lists
-- | /O(n*log n)/ Construct a map with the supplied mappings. If the
-- list contains duplicate mappings, the later mappings take
-- precedence.
fromList :: (Eq k, Hashable k) => [(k, v)] -> HashMap k v
fromList = L.foldl' (\ m (k, !v) -> HM.unsafeInsert k v m) empty
{-# INLINABLE fromList #-}
-- | /O(n*log n)/ Construct a map from a list of elements. Uses
-- the provided function to merge duplicate entries.
fromListWith :: (Eq k, Hashable k) => (v -> v -> v) -> [(k, v)] -> HashMap k v
fromListWith f = L.foldl' (\ m (k, v) -> unsafeInsertWith f k v m) empty
{-# INLINE fromListWith #-}
------------------------------------------------------------------------
-- Array operations
updateWith :: Eq k => (v -> v) -> k -> A.Array (Leaf k v) -> A.Array (Leaf k v)
updateWith f k0 ary0 = go k0 ary0 0 (A.length ary0)
where
go !k !ary !i !n
| i >= n = ary
| otherwise = case A.index ary i of
(L kx y) | k == kx -> let !v' = f y in A.update ary i (L k v')
| otherwise -> go k ary (i+1) n
{-# INLINABLE updateWith #-}
-- | Append the given key and value to the array. If the key is
-- already present, instead update the value of the key by applying
-- the given function to the new and old value (in that order). The
-- value is always evaluated to WHNF before being inserted into the
-- array.
updateOrSnocWith :: Eq k => (v -> v -> v) -> k -> v -> A.Array (Leaf k v)
-> A.Array (Leaf k v)
updateOrSnocWith f k0 v0 ary0 = go k0 v0 ary0 0 (A.length ary0)
where
go !k v !ary !i !n
| i >= n = A.run $ do
-- Not found, append to the end.
mary <- A.new_ (n + 1)
A.copy ary 0 mary 0 n
let !l = v `seq` (L k v)
A.write mary n l
return mary
| otherwise = case A.index ary i of
(L kx y) | k == kx -> let !v' = f v y in A.update ary i (L k v')
| otherwise -> go k v ary (i+1) n
{-# INLINABLE updateOrSnocWith #-}
------------------------------------------------------------------------
-- Smart constructors
--
-- These constructors make sure the value is in WHNF before it's
-- inserted into the constructor.
leaf :: Hash -> k -> v -> HashMap k v
leaf h k !v = Leaf h (L k v)
{-# INLINE leaf #-}