-
Notifications
You must be signed in to change notification settings - Fork 100
/
Copy pathInternal.hs
2477 lines (2239 loc) · 90.7 KB
/
Internal.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveLift #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE PatternGuards #-}
{-# LANGUAGE RoleAnnotations #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TemplateHaskellQuotes #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeInType #-}
{-# LANGUAGE UnboxedSums #-}
{-# LANGUAGE UnboxedTuples #-}
{-# OPTIONS_GHC -fno-full-laziness -funbox-strict-fields #-}
{-# OPTIONS_HADDOCK not-home #-}
-- | = WARNING
--
-- This module is considered __internal__.
--
-- The Package Versioning Policy __does not apply__.
--
-- The contents of this module may change __in any way whatsoever__
-- and __without any warning__ between minor versions of this package.
--
-- Authors importing this module are expected to track development
-- closely.
module Data.HashMap.Internal
(
HashMap(..)
, Leaf(..)
-- * Construction
, empty
, singleton
-- * Basic interface
, null
, size
, member
, lookup
, (!?)
, findWithDefault
, lookupDefault
, (!)
, insert
, insertWith
, unsafeInsert
, delete
, adjust
, update
, alter
, alterF
, isSubmapOf
, isSubmapOfBy
-- * Combine
-- ** Union
, union
, unionWith
, unionWithKey
, unions
-- ** Compose
, compose
-- * Transformations
, map
, mapWithKey
, traverseWithKey
, mapKeys
-- * Difference and intersection
, difference
, differenceWith
, intersection
, intersectionWith
, intersectionWithKey
, intersectionWithKey#
-- * Folds
, foldr'
, foldl'
, foldrWithKey'
, foldlWithKey'
, foldr
, foldl
, foldrWithKey
, foldlWithKey
, foldMapWithKey
-- * Filter
, mapMaybe
, mapMaybeWithKey
, filter
, filterWithKey
-- * Conversions
, keys
, elems
-- ** Lists
, toList
, fromList
, fromListWith
, fromListWithKey
-- ** Internals used by the strict version
, Hash
, Bitmap
, Shift
, bitmapIndexedOrFull
, collision
, hash
, mask
, index
, bitsPerSubkey
, fullBitmap
, nextShift
, sparseIndex
, two
, unionArrayBy
, update32
, update32M
, update32With'
, updateOrConcatWithKey
, filterMapAux
, equalKeys
, equalKeys1
, lookupRecordCollision
, LookupRes(..)
, insert'
, delete'
, lookup'
, insertNewKey
, insertKeyExists
, deleteKeyExists
, insertModifying
, ptrEq
, adjust#
) where
import Control.Applicative (Const (..))
import Control.DeepSeq (NFData (..), NFData1 (..), NFData2 (..))
import Control.Monad.ST (ST, runST)
import Data.Bifoldable (Bifoldable (..))
import Data.Bits (complement, countTrailingZeros, popCount,
shiftL, unsafeShiftL, unsafeShiftR, (.&.),
(.|.))
import Data.Coerce (coerce)
import Data.Data (Constr, Data (..), DataType)
import Data.Functor.Classes (Eq1 (..), Eq2 (..), Ord1 (..), Ord2 (..),
Read1 (..), Show1 (..), Show2 (..))
import Data.Functor.Identity (Identity (..))
import Data.Hashable (Hashable)
import Data.Hashable.Lifted (Hashable1, Hashable2)
import Data.HashMap.Internal.List (isPermutationBy, unorderedCompare)
import Data.Semigroup (Semigroup (..), stimesIdempotentMonoid)
import GHC.Exts (Int (..), Int#, TYPE, (==#))
import GHC.Stack (HasCallStack)
import Prelude hiding (filter, foldl, foldr, lookup, map,
null, pred)
import Text.Read hiding (step)
import qualified Data.Data as Data
import qualified Data.Foldable as Foldable
import qualified Data.Functor.Classes as FC
import qualified Data.Hashable as H
import qualified Data.Hashable.Lifted as H
import qualified Data.HashMap.Internal.Array as A
import qualified Data.List as List
import qualified GHC.Exts as Exts
import qualified Language.Haskell.TH.Syntax as TH
-- | A set of values. A set cannot contain duplicate values.
------------------------------------------------------------------------
-- | Convenience function. Compute a hash value for the given value.
hash :: H.Hashable a => a -> Hash
hash = fromIntegral . H.hash
data Leaf k v = L !k v
deriving (Eq)
instance (NFData k, NFData v) => NFData (Leaf k v) where
rnf (L k v) = rnf k `seq` rnf v
-- | @since 0.2.17.0
instance (TH.Lift k, TH.Lift v) => TH.Lift (Leaf k v) where
#if MIN_VERSION_template_haskell(2,16,0)
liftTyped (L k v) = [|| L k $! v ||]
#else
lift (L k v) = [| L k $! v |]
#endif
-- | @since 0.2.14.0
instance NFData k => NFData1 (Leaf k) where
liftRnf = liftRnf2 rnf
-- | @since 0.2.14.0
instance NFData2 Leaf where
liftRnf2 rnf1 rnf2 (L k v) = rnf1 k `seq` rnf2 v
-- Invariant: The length of the 1st argument to 'Full' is
-- 2^bitsPerSubkey
-- | A map from keys to values. A map cannot contain duplicate keys;
-- each key can map to at most one value.
data HashMap k v
= Empty
| BitmapIndexed !Bitmap !(A.Array (HashMap k v))
| Leaf !Hash !(Leaf k v)
| Full !(A.Array (HashMap k v))
| Collision !Hash !(A.Array (Leaf k v))
type role HashMap nominal representational
-- | @since 0.2.17.0
deriving instance (TH.Lift k, TH.Lift v) => TH.Lift (HashMap k v)
instance (NFData k, NFData v) => NFData (HashMap k v) where
rnf Empty = ()
rnf (BitmapIndexed _ ary) = rnf ary
rnf (Leaf _ l) = rnf l
rnf (Full ary) = rnf ary
rnf (Collision _ ary) = rnf ary
-- | @since 0.2.14.0
instance NFData k => NFData1 (HashMap k) where
liftRnf = liftRnf2 rnf
-- | @since 0.2.14.0
instance NFData2 HashMap where
liftRnf2 _ _ Empty = ()
liftRnf2 rnf1 rnf2 (BitmapIndexed _ ary) = liftRnf (liftRnf2 rnf1 rnf2) ary
liftRnf2 rnf1 rnf2 (Leaf _ l) = liftRnf2 rnf1 rnf2 l
liftRnf2 rnf1 rnf2 (Full ary) = liftRnf (liftRnf2 rnf1 rnf2) ary
liftRnf2 rnf1 rnf2 (Collision _ ary) = liftRnf (liftRnf2 rnf1 rnf2) ary
instance Functor (HashMap k) where
fmap = map
instance Foldable.Foldable (HashMap k) where
foldMap f = foldMapWithKey (\ _k v -> f v)
{-# INLINE foldMap #-}
foldr = foldr
{-# INLINE foldr #-}
foldl = foldl
{-# INLINE foldl #-}
foldr' = foldr'
{-# INLINE foldr' #-}
foldl' = foldl'
{-# INLINE foldl' #-}
null = null
{-# INLINE null #-}
length = size
{-# INLINE length #-}
-- | @since 0.2.11
instance Bifoldable HashMap where
bifoldMap f g = foldMapWithKey (\ k v -> f k `mappend` g v)
{-# INLINE bifoldMap #-}
bifoldr f g = foldrWithKey (\ k v acc -> k `f` (v `g` acc))
{-# INLINE bifoldr #-}
bifoldl f g = foldlWithKey (\ acc k v -> (acc `f` k) `g` v)
{-# INLINE bifoldl #-}
-- | '<>' = 'union'
--
-- If a key occurs in both maps, the mapping from the first will be the mapping in the result.
--
-- ==== __Examples__
--
-- >>> fromList [(1,'a'),(2,'b')] <> fromList [(2,'c'),(3,'d')]
-- fromList [(1,'a'),(2,'b'),(3,'d')]
instance (Eq k, Hashable k) => Semigroup (HashMap k v) where
(<>) = union
{-# INLINE (<>) #-}
stimes = stimesIdempotentMonoid
{-# INLINE stimes #-}
-- | 'mempty' = 'empty'
--
-- 'mappend' = 'union'
--
-- If a key occurs in both maps, the mapping from the first will be the mapping in the result.
--
-- ==== __Examples__
--
-- >>> mappend (fromList [(1,'a'),(2,'b')]) (fromList [(2,'c'),(3,'d')])
-- fromList [(1,'a'),(2,'b'),(3,'d')]
instance (Eq k, Hashable k) => Monoid (HashMap k v) where
mempty = empty
{-# INLINE mempty #-}
mappend = (<>)
{-# INLINE mappend #-}
instance (Data k, Data v, Eq k, Hashable k) => Data (HashMap k v) where
gfoldl f z m = z fromList `f` toList m
toConstr _ = fromListConstr
gunfold k z c = case Data.constrIndex c of
1 -> k (z fromList)
_ -> error "gunfold"
dataTypeOf _ = hashMapDataType
dataCast1 f = Data.gcast1 f
dataCast2 f = Data.gcast2 f
fromListConstr :: Constr
fromListConstr = Data.mkConstr hashMapDataType "fromList" [] Data.Prefix
hashMapDataType :: DataType
hashMapDataType = Data.mkDataType "Data.HashMap.Internal.HashMap" [fromListConstr]
-- | This type is used to store the hash of a key, as produced with 'hash'.
type Hash = Word
-- | A bitmap as contained by a 'BitmapIndexed' node, or a 'fullBitmap'
-- corresponding to a 'Full' node.
--
-- Only the lower 'maxChildren' bits are used. The remaining bits must be zeros.
type Bitmap = Word
-- | 'Shift' values correspond to the level of the tree that we're currently
-- operating at. At the root level the 'Shift' is @0@. For the subsequent
-- levels the 'Shift' values are 'bitsPerSubkey', @2*'bitsPerSubkey'@ etc.
--
-- Valid values are non-negative and less than @bitSize (0 :: Word)@.
type Shift = Int
instance Show2 HashMap where
liftShowsPrec2 spk slk spv slv d m =
FC.showsUnaryWith (liftShowsPrec sp sl) "fromList" d (toList m)
where
sp = liftShowsPrec2 spk slk spv slv
sl = liftShowList2 spk slk spv slv
instance Show k => Show1 (HashMap k) where
liftShowsPrec = liftShowsPrec2 showsPrec showList
instance (Eq k, Hashable k, Read k) => Read1 (HashMap k) where
liftReadsPrec rp rl = FC.readsData $
FC.readsUnaryWith (liftReadsPrec rp' rl') "fromList" fromList
where
rp' = liftReadsPrec rp rl
rl' = liftReadList rp rl
instance (Eq k, Hashable k, Read k, Read e) => Read (HashMap k e) where
readPrec = parens $ prec 10 $ do
Ident "fromList" <- lexP
fromList <$> readPrec
readListPrec = readListPrecDefault
instance (Show k, Show v) => Show (HashMap k v) where
showsPrec d m = showParen (d > 10) $
showString "fromList " . shows (toList m)
instance Traversable (HashMap k) where
traverse f = traverseWithKey (const f)
{-# INLINABLE traverse #-}
instance Eq2 HashMap where
liftEq2 = equal2
instance Eq k => Eq1 (HashMap k) where
liftEq = equal1
-- | Note that, in the presence of hash collisions, equal @HashMap@s may
-- behave differently, i.e. substitutivity may be violated:
--
-- >>> data D = A | B deriving (Eq, Show)
-- >>> instance Hashable D where hashWithSalt salt _d = salt
--
-- >>> x = fromList [(A,1), (B,2)]
-- >>> y = fromList [(B,2), (A,1)]
--
-- >>> x == y
-- True
-- >>> toList x
-- [(A,1),(B,2)]
-- >>> toList y
-- [(B,2),(A,1)]
--
-- In general, the lack of substitutivity can be observed with any function
-- that depends on the key ordering, such as folds and traversals.
instance (Eq k, Eq v) => Eq (HashMap k v) where
(==) = equal1 (==)
-- We rely on there being no Empty constructors in the tree!
-- This ensures that two equal HashMaps will have the same
-- shape, modulo the order of entries in Collisions.
equal1 :: Eq k
=> (v -> v' -> Bool)
-> HashMap k v -> HashMap k v' -> Bool
equal1 eq = go
where
go Empty Empty = True
go (BitmapIndexed bm1 ary1) (BitmapIndexed bm2 ary2)
= bm1 == bm2 && A.sameArray1 go ary1 ary2
go (Leaf h1 l1) (Leaf h2 l2) = h1 == h2 && leafEq l1 l2
go (Full ary1) (Full ary2) = A.sameArray1 go ary1 ary2
go (Collision h1 ary1) (Collision h2 ary2)
= h1 == h2 && isPermutationBy leafEq (A.toList ary1) (A.toList ary2)
go _ _ = False
leafEq (L k1 v1) (L k2 v2) = k1 == k2 && eq v1 v2
equal2 :: (k -> k' -> Bool) -> (v -> v' -> Bool)
-> HashMap k v -> HashMap k' v' -> Bool
equal2 eqk eqv t1 t2 = go (leavesAndCollisions t1 []) (leavesAndCollisions t2 [])
where
-- If the two trees are the same, then their lists of 'Leaf's and
-- 'Collision's read from left to right should be the same (modulo the
-- order of elements in 'Collision').
go (Leaf k1 l1 : tl1) (Leaf k2 l2 : tl2)
| k1 == k2 &&
leafEq l1 l2
= go tl1 tl2
go (Collision k1 ary1 : tl1) (Collision k2 ary2 : tl2)
| k1 == k2 &&
A.length ary1 == A.length ary2 &&
isPermutationBy leafEq (A.toList ary1) (A.toList ary2)
= go tl1 tl2
go [] [] = True
go _ _ = False
leafEq (L k v) (L k' v') = eqk k k' && eqv v v'
instance Ord2 HashMap where
liftCompare2 = cmp
instance Ord k => Ord1 (HashMap k) where
liftCompare = cmp compare
-- | The ordering is total and consistent with the `Eq` instance. However,
-- nothing else about the ordering is specified, and it may change from
-- version to version of either this package or of hashable.
instance (Ord k, Ord v) => Ord (HashMap k v) where
compare = cmp compare compare
cmp :: (k -> k' -> Ordering) -> (v -> v' -> Ordering)
-> HashMap k v -> HashMap k' v' -> Ordering
cmp cmpk cmpv t1 t2 = go (leavesAndCollisions t1 []) (leavesAndCollisions t2 [])
where
go (Leaf k1 l1 : tl1) (Leaf k2 l2 : tl2)
= compare k1 k2 `mappend`
leafCompare l1 l2 `mappend`
go tl1 tl2
go (Collision k1 ary1 : tl1) (Collision k2 ary2 : tl2)
= compare k1 k2 `mappend`
compare (A.length ary1) (A.length ary2) `mappend`
unorderedCompare leafCompare (A.toList ary1) (A.toList ary2) `mappend`
go tl1 tl2
go (Leaf _ _ : _) (Collision _ _ : _) = LT
go (Collision _ _ : _) (Leaf _ _ : _) = GT
go [] [] = EQ
go [] _ = LT
go _ [] = GT
go _ _ = error "cmp: Should never happen, leavesAndCollisions includes non Leaf / Collision"
leafCompare (L k v) (L k' v') = cmpk k k' `mappend` cmpv v v'
-- Same as 'equal2' but doesn't compare the values.
equalKeys1 :: (k -> k' -> Bool) -> HashMap k v -> HashMap k' v' -> Bool
equalKeys1 eq t1 t2 = go (leavesAndCollisions t1 []) (leavesAndCollisions t2 [])
where
go (Leaf k1 l1 : tl1) (Leaf k2 l2 : tl2)
| k1 == k2 && leafEq l1 l2
= go tl1 tl2
go (Collision k1 ary1 : tl1) (Collision k2 ary2 : tl2)
| k1 == k2 && A.length ary1 == A.length ary2 &&
isPermutationBy leafEq (A.toList ary1) (A.toList ary2)
= go tl1 tl2
go [] [] = True
go _ _ = False
leafEq (L k _) (L k' _) = eq k k'
-- Same as 'equal1' but doesn't compare the values.
equalKeys :: Eq k => HashMap k v -> HashMap k v' -> Bool
equalKeys = go
where
go :: Eq k => HashMap k v -> HashMap k v' -> Bool
go Empty Empty = True
go (BitmapIndexed bm1 ary1) (BitmapIndexed bm2 ary2)
= bm1 == bm2 && A.sameArray1 go ary1 ary2
go (Leaf h1 l1) (Leaf h2 l2) = h1 == h2 && leafEq l1 l2
go (Full ary1) (Full ary2) = A.sameArray1 go ary1 ary2
go (Collision h1 ary1) (Collision h2 ary2)
= h1 == h2 && isPermutationBy leafEq (A.toList ary1) (A.toList ary2)
go _ _ = False
leafEq (L k1 _) (L k2 _) = k1 == k2
instance Hashable2 HashMap where
liftHashWithSalt2 hk hv salt hm = go salt (leavesAndCollisions hm [])
where
-- go :: Int -> [HashMap k v] -> Int
go s [] = s
go s (Leaf _ l : tl)
= s `hashLeafWithSalt` l `go` tl
-- For collisions we hashmix hash value
-- and then array of values' hashes sorted
go s (Collision h a : tl)
= (s `H.hashWithSalt` h) `hashCollisionWithSalt` a `go` tl
go s (_ : tl) = s `go` tl
-- hashLeafWithSalt :: Int -> Leaf k v -> Int
hashLeafWithSalt s (L k v) = (s `hk` k) `hv` v
-- hashCollisionWithSalt :: Int -> A.Array (Leaf k v) -> Int
hashCollisionWithSalt s
= List.foldl' H.hashWithSalt s . arrayHashesSorted s
-- arrayHashesSorted :: Int -> A.Array (Leaf k v) -> [Int]
arrayHashesSorted s = List.sort . List.map (hashLeafWithSalt s) . A.toList
instance (Hashable k) => Hashable1 (HashMap k) where
liftHashWithSalt = H.liftHashWithSalt2 H.hashWithSalt
instance (Hashable k, Hashable v) => Hashable (HashMap k v) where
hashWithSalt salt hm = go salt hm
where
go :: Int -> HashMap k v -> Int
go s Empty = s
go s (BitmapIndexed _ a) = A.foldl' go s a
go s (Leaf h (L _ v))
= s `H.hashWithSalt` h `H.hashWithSalt` v
-- For collisions we hashmix hash value
-- and then array of values' hashes sorted
go s (Full a) = A.foldl' go s a
go s (Collision h a)
= (s `H.hashWithSalt` h) `hashCollisionWithSalt` a
hashLeafWithSalt :: Int -> Leaf k v -> Int
hashLeafWithSalt s (L k v) = s `H.hashWithSalt` k `H.hashWithSalt` v
hashCollisionWithSalt :: Int -> A.Array (Leaf k v) -> Int
hashCollisionWithSalt s
= List.foldl' H.hashWithSalt s . arrayHashesSorted s
arrayHashesSorted :: Int -> A.Array (Leaf k v) -> [Int]
arrayHashesSorted s = List.sort . List.map (hashLeafWithSalt s) . A.toList
-- | Helper to get 'Leaf's and 'Collision's as a list.
leavesAndCollisions :: HashMap k v -> [HashMap k v] -> [HashMap k v]
leavesAndCollisions (BitmapIndexed _ ary) a = A.foldr leavesAndCollisions a ary
leavesAndCollisions (Full ary) a = A.foldr leavesAndCollisions a ary
leavesAndCollisions l@(Leaf _ _) a = l : a
leavesAndCollisions c@(Collision _ _) a = c : a
leavesAndCollisions Empty a = a
-- | Helper function to detect 'Leaf's and 'Collision's.
isLeafOrCollision :: HashMap k v -> Bool
isLeafOrCollision (Leaf _ _) = True
isLeafOrCollision (Collision _ _) = True
isLeafOrCollision _ = False
------------------------------------------------------------------------
-- * Construction
-- | \(O(1)\) Construct an empty map.
empty :: HashMap k v
empty = Empty
-- | \(O(1)\) Construct a map with a single element.
singleton :: (Hashable k) => k -> v -> HashMap k v
singleton k v = Leaf (hash k) (L k v)
------------------------------------------------------------------------
-- * Basic interface
-- | \(O(1)\) Return 'True' if this map is empty, 'False' otherwise.
null :: HashMap k v -> Bool
null Empty = True
null _ = False
-- | \(O(n)\) Return the number of key-value mappings in this map.
size :: HashMap k v -> Int
size t = go t 0
where
go Empty !n = n
go (Leaf _ _) n = n + 1
go (BitmapIndexed _ ary) n = A.foldl' (flip go) n ary
go (Full ary) n = A.foldl' (flip go) n ary
go (Collision _ ary) n = n + A.length ary
-- | \(O(\log n)\) Return 'True' if the specified key is present in the
-- map, 'False' otherwise.
member :: (Eq k, Hashable k) => k -> HashMap k a -> Bool
member k m = case lookup k m of
Nothing -> False
Just _ -> True
{-# INLINABLE member #-}
-- | \(O(\log n)\) Return the value to which the specified key is mapped,
-- or 'Nothing' if this map contains no mapping for the key.
lookup :: (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
-- GHC does not yet perform a worker-wrapper transformation on
-- unboxed sums automatically. That seems likely to happen at some
-- point (possibly as early as GHC 8.6) but for now we do it manually.
lookup k m = case lookup# k m of
(# (# #) | #) -> Nothing
(# | a #) -> Just a
{-# INLINE lookup #-}
lookup# :: (Eq k, Hashable k) => k -> HashMap k v -> (# (# #) | v #)
lookup# k m = lookupCont (\_ -> (# (# #) | #)) (\v _i -> (# | v #)) (hash k) k 0 m
{-# INLINABLE lookup# #-}
-- | lookup' is a version of lookup that takes the hash separately.
-- It is used to implement alterF.
lookup' :: Eq k => Hash -> k -> HashMap k v -> Maybe v
-- GHC does not yet perform a worker-wrapper transformation on
-- unboxed sums automatically. That seems likely to happen at some
-- point (possibly as early as GHC 8.6) but for now we do it manually.
-- lookup' would probably prefer to be implemented in terms of its own
-- lookup'#, but it's not important enough and we don't want too much
-- code.
lookup' h k m = case lookupRecordCollision# h k m of
(# (# #) | #) -> Nothing
(# | (# a, _i #) #) -> Just a
{-# INLINE lookup' #-}
-- The result of a lookup, keeping track of if a hash collision occured.
-- If a collision did not occur then it will have the Int value (-1).
data LookupRes a = Absent | Present a !Int
-- Internal helper for lookup. This version takes the precomputed hash so
-- that functions that make multiple calls to lookup and related functions
-- (insert, delete) only need to calculate the hash once.
--
-- It is used by 'alterF' so that hash computation and key comparison only needs
-- to be performed once. With this information you can use the more optimized
-- versions of insert ('insertNewKey', 'insertKeyExists') and delete
-- ('deleteKeyExists')
--
-- Outcomes:
-- Key not in map => Absent
-- Key in map, no collision => Present v (-1)
-- Key in map, collision => Present v position
lookupRecordCollision :: Eq k => Hash -> k -> HashMap k v -> LookupRes v
lookupRecordCollision h k m = case lookupRecordCollision# h k m of
(# (# #) | #) -> Absent
(# | (# a, i #) #) -> Present a (I# i) -- GHC will eliminate the I#
{-# INLINE lookupRecordCollision #-}
-- Why do we produce an Int# instead of an Int? Unfortunately, GHC is not
-- yet any good at unboxing things *inside* products, let alone sums. That
-- may be changing in GHC 8.6 or so (there is some work in progress), but
-- for now we use Int# explicitly here. We don't need to push the Int#
-- into lookupCont because inlining takes care of that.
lookupRecordCollision# :: Eq k => Hash -> k -> HashMap k v -> (# (# #) | (# v, Int# #) #)
lookupRecordCollision# h k m =
lookupCont (\_ -> (# (# #) | #)) (\v (I# i) -> (# | (# v, i #) #)) h k 0 m
-- INLINABLE to specialize to the Eq instance.
{-# INLINABLE lookupRecordCollision# #-}
-- A two-continuation version of lookupRecordCollision. This lets us
-- share source code between lookup and lookupRecordCollision without
-- risking any performance degradation.
--
-- The absent continuation has type @((# #) -> r)@ instead of just @r@
-- so we can be representation-polymorphic in the result type. Since
-- this whole thing is always inlined, we don't have to worry about
-- any extra CPS overhead.
--
-- The @Int@ argument is the offset of the subkey in the hash. When looking up
-- keys at the top-level of a hashmap, the offset should be 0. When looking up
-- keys at level @n@ of a hashmap, the offset should be @n * bitsPerSubkey@.
lookupCont ::
forall rep (r :: TYPE rep) k v.
Eq k
=> ((# #) -> r) -- Absent continuation
-> (v -> Int -> r) -- Present continuation
-> Hash -- The hash of the key
-> k
-> Int -- The offset of the subkey in the hash.
-> HashMap k v -> r
lookupCont absent present !h0 !k0 !s0 !m0 = go h0 k0 s0 m0
where
go :: Eq k => Hash -> k -> Int -> HashMap k v -> r
go !_ !_ !_ Empty = absent (# #)
go h k _ (Leaf hx (L kx x))
| h == hx && k == kx = present x (-1)
| otherwise = absent (# #)
go h k s (BitmapIndexed b v)
| b .&. m == 0 = absent (# #)
| otherwise =
go h k (nextShift s) (A.index v (sparseIndex b m))
where m = mask h s
go h k s (Full v) =
go h k (nextShift s) (A.index v (index h s))
go h k _ (Collision hx v)
| h == hx = lookupInArrayCont absent present k v
| otherwise = absent (# #)
{-# INLINE lookupCont #-}
-- | \(O(\log n)\) Return the value to which the specified key is mapped,
-- or 'Nothing' if this map contains no mapping for the key.
--
-- This is a flipped version of 'lookup'.
--
-- @since 0.2.11
(!?) :: (Eq k, Hashable k) => HashMap k v -> k -> Maybe v
(!?) m k = lookup k m
{-# INLINE (!?) #-}
-- | \(O(\log n)\) Return the value to which the specified key is mapped,
-- or the default value if this map contains no mapping for the key.
--
-- @since 0.2.11
findWithDefault :: (Eq k, Hashable k)
=> v -- ^ Default value to return.
-> k -> HashMap k v -> v
findWithDefault def k t = case lookup k t of
Just v -> v
_ -> def
{-# INLINABLE findWithDefault #-}
-- | \(O(\log n)\) Return the value to which the specified key is mapped,
-- or the default value if this map contains no mapping for the key.
--
-- DEPRECATED: lookupDefault is deprecated as of version 0.2.11, replaced
-- by 'findWithDefault'.
lookupDefault :: (Eq k, Hashable k)
=> v -- ^ Default value to return.
-> k -> HashMap k v -> v
lookupDefault = findWithDefault
{-# INLINE lookupDefault #-}
-- | \(O(\log n)\) Return the value to which the specified key is mapped.
-- Calls 'error' if this map contains no mapping for the key.
(!) :: (Eq k, Hashable k, HasCallStack) => HashMap k v -> k -> v
(!) m k = case lookup k m of
Just v -> v
Nothing -> error "Data.HashMap.Internal.(!): key not found"
{-# INLINABLE (!) #-}
infixl 9 !
-- | Create a 'Collision' value with two 'Leaf' values.
collision :: Hash -> Leaf k v -> Leaf k v -> HashMap k v
collision h !e1 !e2 =
let v = A.run $ do mary <- A.new 2 e1
A.write mary 1 e2
return mary
in Collision h v
{-# INLINE collision #-}
-- | Create a 'BitmapIndexed' or 'Full' node.
bitmapIndexedOrFull :: Bitmap -> A.Array (HashMap k v) -> HashMap k v
-- The strictness in @ary@ helps achieve a nice code size reduction in
-- @unionWith[Key]@ with GHC 9.2.2. See the Core diffs in
-- https://github.com/haskell-unordered-containers/unordered-containers/pull/376.
bitmapIndexedOrFull b !ary
| b == fullBitmap = Full ary
| otherwise = BitmapIndexed b ary
{-# INLINE bitmapIndexedOrFull #-}
-- | \(O(\log n)\) Associate the specified value with the specified
-- key in this map. If this map previously contained a mapping for
-- the key, the old value is replaced.
insert :: (Eq k, Hashable k) => k -> v -> HashMap k v -> HashMap k v
insert k v m = insert' (hash k) k v m
{-# INLINABLE insert #-}
insert' :: Eq k => Hash -> k -> v -> HashMap k v -> HashMap k v
insert' h0 k0 v0 m0 = go h0 k0 v0 0 m0
where
go !h !k x !_ Empty = Leaf h (L k x)
go h k x s t@(Leaf hy l@(L ky y))
| hy == h = if ky == k
then if x `ptrEq` y
then t
else Leaf h (L k x)
else collision h l (L k x)
| otherwise = runST (two s h k x hy t)
go h k x s t@(BitmapIndexed b ary)
| b .&. m == 0 =
let !ary' = A.insert ary i $! Leaf h (L k x)
in bitmapIndexedOrFull (b .|. m) ary'
| otherwise =
let !st = A.index ary i
!st' = go h k x (nextShift s) st
in if st' `ptrEq` st
then t
else BitmapIndexed b (A.update ary i st')
where m = mask h s
i = sparseIndex b m
go h k x s t@(Full ary) =
let !st = A.index ary i
!st' = go h k x (nextShift s) st
in if st' `ptrEq` st
then t
else Full (update32 ary i st')
where i = index h s
go h k x s t@(Collision hy v)
| h == hy = Collision h (updateOrSnocWith (\a _ -> (# a #)) k x v)
| otherwise = go h k x s $ BitmapIndexed (mask hy s) (A.singleton t)
{-# INLINABLE insert' #-}
-- Insert optimized for the case when we know the key is not in the map.
--
-- It is only valid to call this when the key does not exist in the map.
--
-- We can skip:
-- - the key equality check on a Leaf
-- - check for its existence in the array for a hash collision
insertNewKey :: Hash -> k -> v -> HashMap k v -> HashMap k v
insertNewKey !h0 !k0 x0 !m0 = go h0 k0 x0 0 m0
where
go !h !k x !_ Empty = Leaf h (L k x)
go h k x s t@(Leaf hy l)
| hy == h = collision h l (L k x)
| otherwise = runST (two s h k x hy t)
go h k x s (BitmapIndexed b ary)
| b .&. m == 0 =
let !ary' = A.insert ary i $! Leaf h (L k x)
in bitmapIndexedOrFull (b .|. m) ary'
| otherwise =
let !st = A.index ary i
!st' = go h k x (nextShift s) st
in BitmapIndexed b (A.update ary i st')
where m = mask h s
i = sparseIndex b m
go h k x s (Full ary) =
let !st = A.index ary i
!st' = go h k x (nextShift s) st
in Full (update32 ary i st')
where i = index h s
go h k x s t@(Collision hy v)
| h == hy = Collision h (A.snoc v (L k x))
| otherwise =
go h k x s $ BitmapIndexed (mask hy s) (A.singleton t)
{-# NOINLINE insertNewKey #-}
-- Insert optimized for the case when we know the key is in the map.
--
-- It is only valid to call this when the key exists in the map and you know the
-- hash collision position if there was one. This information can be obtained
-- from 'lookupRecordCollision'. If there is no collision pass (-1) as collPos
-- (first argument).
--
-- We can skip the key equality check on a Leaf because we know the leaf must be
-- for this key.
insertKeyExists :: Int -> Hash -> k -> v -> HashMap k v -> HashMap k v
insertKeyExists !collPos0 !h0 !k0 x0 !m0 = go collPos0 h0 k0 x0 0 m0
where
go !_collPos !h !k x !_s (Leaf _hy _kx)
= Leaf h (L k x)
go collPos h k x s (BitmapIndexed b ary)
| b .&. m == 0 =
let !ary' = A.insert ary i $ Leaf h (L k x)
in bitmapIndexedOrFull (b .|. m) ary'
| otherwise =
let !st = A.index ary i
!st' = go collPos h k x (nextShift s) st
in BitmapIndexed b (A.update ary i st')
where m = mask h s
i = sparseIndex b m
go collPos h k x s (Full ary) =
let !st = A.index ary i
!st' = go collPos h k x (nextShift s) st
in Full (update32 ary i st')
where i = index h s
go collPos h k x _s (Collision _hy v)
| collPos >= 0 = Collision h (setAtPosition collPos k x v)
| otherwise = Empty -- error "Internal error: go {collPos negative}"
go _ _ _ _ _ Empty = Empty -- error "Internal error: go Empty"
{-# NOINLINE insertKeyExists #-}
-- Replace the ith Leaf with Leaf k v.
--
-- This does not check that @i@ is within bounds of the array.
setAtPosition :: Int -> k -> v -> A.Array (Leaf k v) -> A.Array (Leaf k v)
setAtPosition i k x ary = A.update ary i (L k x)
{-# INLINE setAtPosition #-}
-- | In-place update version of insert
unsafeInsert :: (Eq k, Hashable k) => k -> v -> HashMap k v -> HashMap k v
unsafeInsert k0 v0 m0 = runST (go h0 k0 v0 0 m0)
where
h0 = hash k0
go !h !k x !_ Empty = return $! Leaf h (L k x)
go h k x s t@(Leaf hy l@(L ky y))
| hy == h = if ky == k
then if x `ptrEq` y
then return t
else return $! Leaf h (L k x)
else return $! collision h l (L k x)
| otherwise = two s h k x hy t
go h k x s t@(BitmapIndexed b ary)
| b .&. m == 0 = do
ary' <- A.insertM ary i $! Leaf h (L k x)
return $! bitmapIndexedOrFull (b .|. m) ary'
| otherwise = do
st <- A.indexM ary i
st' <- go h k x (nextShift s) st
A.unsafeUpdateM ary i st'
return t
where m = mask h s
i = sparseIndex b m
go h k x s t@(Full ary) = do
st <- A.indexM ary i
st' <- go h k x (nextShift s) st
A.unsafeUpdateM ary i st'
return t
where i = index h s
go h k x s t@(Collision hy v)
| h == hy = return $! Collision h (updateOrSnocWith (\a _ -> (# a #)) k x v)
| otherwise = go h k x s $ BitmapIndexed (mask hy s) (A.singleton t)
{-# INLINABLE unsafeInsert #-}
-- | Create a map from two key-value pairs which hashes don't collide. To
-- enhance sharing, the second key-value pair is represented by the hash of its
-- key and a singleton HashMap pairing its key with its value.
--
-- Note: to avoid silly thunks, this function must be strict in the
-- key. See issue #232. We don't need to force the HashMap argument
-- because it's already in WHNF (having just been matched) and we
-- just put it directly in an array.
two :: Shift -> Hash -> k -> v -> Hash -> HashMap k v -> ST s (HashMap k v)
two = go
where
go s h1 k1 v1 h2 t2
| bp1 == bp2 = do
st <- go (nextShift s) h1 k1 v1 h2 t2
ary <- A.singletonM st
return $ BitmapIndexed bp1 ary
| otherwise = do
mary <- A.new 2 $! Leaf h1 (L k1 v1)
A.write mary idx2 t2
ary <- A.unsafeFreeze mary
return $ BitmapIndexed (bp1 .|. bp2) ary
where
bp1 = mask h1 s
bp2 = mask h2 s
idx2 | index h1 s < index h2 s = 1
| otherwise = 0
{-# INLINE two #-}
-- | \(O(\log n)\) Associate the value with the key in this map. If
-- this map previously contained a mapping for the key, the old value
-- is replaced by the result of applying the given function to the new
-- and old value. Example:
--
-- > insertWith f k v map
-- > where f new old = new + old
insertWith :: (Eq k, Hashable k) => (v -> v -> v) -> k -> v -> HashMap k v
-> HashMap k v
-- We're not going to worry about allocating a function closure
-- to pass to insertModifying. See comments at 'adjust'.
insertWith f k new m = insertModifying new (\old -> (# f new old #)) k m
{-# INLINE insertWith #-}
-- | @insertModifying@ is a lot like insertWith; we use it to implement alterF.
-- It takes a value to insert when the key is absent and a function
-- to apply to calculate a new value when the key is present. Thanks
-- to the unboxed unary tuple, we avoid introducing any unnecessary
-- thunks in the tree.
insertModifying :: (Eq k, Hashable k) => v -> (v -> (# v #)) -> k -> HashMap k v
-> HashMap k v
insertModifying x f k0 m0 = go h0 k0 0 m0
where
!h0 = hash k0
go !h !k !_ Empty = Leaf h (L k x)
go h k s t@(Leaf hy l@(L ky y))
| hy == h = if ky == k
then case f y of
(# v' #) | ptrEq y v' -> t
| otherwise -> Leaf h (L k v')
else collision h l (L k x)
| otherwise = runST (two s h k x hy t)
go h k s t@(BitmapIndexed b ary)
| b .&. m == 0 =
let ary' = A.insert ary i $! Leaf h (L k x)
in bitmapIndexedOrFull (b .|. m) ary'
| otherwise =
let !st = A.index ary i
!st' = go h k (nextShift s) st
ary' = A.update ary i $! st'
in if ptrEq st st'
then t
else BitmapIndexed b ary'
where m = mask h s
i = sparseIndex b m
go h k s t@(Full ary) =
let !st = A.index ary i
!st' = go h k (nextShift s) st
ary' = update32 ary i $! st'
in if ptrEq st st'