-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_classifier.py
260 lines (221 loc) · 11.3 KB
/
train_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
""" Train VGG on image data """
import os
import atexit
from datetime import datetime
import argparse
import tensorflow as tf
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from src.models import build_image_classifier
from src.utility import EpochTimeCallback, get_max_batch_size
from src.data_generator import ImageSet
def model_config():
""" Parse arguments and pull selected Keras application """
# Available Keras application models
model_dict = {
"densenet121": tf.keras.applications.DenseNet121,
"densenet169": tf.keras.applications.DenseNet169,
"densenet201": tf.keras.applications.DenseNet201,
"efficientnetb0": tf.keras.applications.EfficientNetB0,
"efficientnetb1": tf.keras.applications.EfficientNetB1,
"efficientnetb2": tf.keras.applications.EfficientNetB2,
"efficientnetb3": tf.keras.applications.EfficientNetB3,
"efficientnetb4": tf.keras.applications.EfficientNetB4,
"efficientnetb5": tf.keras.applications.EfficientNetB5,
"efficientnetb6": tf.keras.applications.EfficientNetB6,
"efficientnetb7": tf.keras.applications.EfficientNetB7,
"inceptionresnetv2": tf.keras.applications.InceptionResNetV2,
"inceptionv3": tf.keras.applications.InceptionV3,
"mobilenet": tf.keras.applications.MobileNet,
"mobilenetv2": tf.keras.applications.MobileNetV2,
"nasnetlarge": tf.keras.applications.NASNetLarge,
"nasnetmobile": tf.keras.applications.NASNetMobile,
"resnet101": tf.keras.applications.ResNet101,
"resnet101v2": tf.keras.applications.ResNet101V2,
"resnet152": tf.keras.applications.ResNet152,
"resnet152v2": tf.keras.applications.ResNet152V2,
"resnet50": tf.keras.applications.ResNet50,
"resnet50v2": tf.keras.applications.ResNet50V2,
"xception": tf.keras.applications.Xception
}
# Parse command line arguments
parser = argparse.ArgumentParser()
parser.add_argument("--data_dir", required=True, help="Directory containing images")
parser.add_argument("--data_csv", required=True, metavar="CSV FILE", help="CSV file pointing to images")
parser.add_argument("--image_column", required=True, help="Column name for images")
parser.add_argument("--label_column", required=True, help="Column name for labels")
parser.add_argument("--arch", required=True, choices=model_dict.keys(), help="Model architecture. Supports most Keras applications.")
parser.add_argument("--test_ratio", help="Percentage for testing data. Default is 0.3 (30%)", type=float, default=0.3)
parser.add_argument("--epochs", help="Number of epochs. Default is 15", type=int, default=15)
parser.add_argument("--classes", help="Number of classes. If not specified, classes will be inferred from labels", type=int, default=None)
parser.add_argument("--batch_size", help="Training batch size. Default is 8", type=int, default=8)
parser.add_argument("--image_height", help="Height of images (pixels)", type=int, default=512)
parser.add_argument("--image_width", help="Width of images (pixels)", type=int, default=512)
parser.add_argument("--image_channels", help="Number of channels", type=int, default=1)
parser.add_argument("--output", help="Specify file name for output. Default is 'model'", default='model')
parser.add_argument("--auto_resize", help="Auto-resize to min height/width of image set", action="store_true")
parser.add_argument("--auto_batch", help="Auto-detect max batch size. Selecting this will override any specified batch size", action="store_true")
parser.add_argument('--index_first', help="Set images to depth as the first index (uncommon)", action="store_true")
parser.add_argument("--run_eagerly", help="Run eagerly (for debug). Will lose performance.", action="store_true")
parser.add_argument("--cross_dev_ops", help="Cross device operation to use for multi-GPU reduction. 'all' = NcclAllReduce, 'hierarchical' = HierarchicalCopyAllReduce, 'one' = ReductionToOneDevice", type=str, choices=["all", "hierarchical", "one"], default="all")
parser.add_argument("--instance_type", help="Instance type for logging purposes", type=str, default=None)
parser.add_argument("--batch_by_gpu", help="Round batch size to multiple of GPU count", action="store_true")
parser.add_argument("--bin_batches", help="Round batch size down to nearest 2^n", action="store_true")
args = parser.parse_args()
if args.arch not in model_dict:
model_arch = None
else:
model_arch = model_dict[args.arch]
return args, model_arch
def split_and_resize(images, labels, test_ratio, input_shape=(512, 512, 1), auto_resize=False, index_first=False, log=None):
train_images, test_images, train_labels, test_labels = train_test_split(images, labels, test_size=test_ratio, random_state=42)
training_set = ImageSet(images=train_images, labels=train_labels, mode="classify", index_first=index_first)
validation_set = ImageSet(images=test_images, labels=test_labels, mode="classify", index_first=index_first)
min_height = min([training_set.min_height, validation_set.min_height])
min_width = min([training_set.min_width, validation_set.min_width])
# Set input image shape
if auto_resize:
input_shape = (min_height, min_width, 1) # (height, width, channels)
training_set.input_shape = input_shape
validation_set.input_shape = input_shape
if log:
log.write(f"Training images: {training_set.count}\n")
log.write(f"Validation images: {validation_set.count}\n")
log.write(f"Min height: {min_height}\n")
log.write(f"Min width: {min_width}\n")
log.write(f"Input shape: {input_shape}\n\n")
print(f"Training images: {training_set.count}")
print(f"Validation images: {validation_set.count}")
print(f"Min height: {min_height}")
print(f"Min width: {min_width}")
print(f"Input shape: {input_shape}")
return training_set, validation_set, input_shape
def main():
ARGS, base_model = model_config()
if base_model is None:
print(f"{ARGS.arch} not in Keras applications!")
print(f"Use '--help' for list of supported options.")
return
f_name = ARGS.data_csv.split("/")[-1].replace(".csv","")
if ARGS.instance_type:
log_name = f"./{f_name}_{ARGS.arch}_{ARGS.instance_type}_log.txt"
else:
log_name = f"./{f_name}_{ARGS.arch}_log.txt"
LOG = open(log_name, "w")
ini_time = datetime.now()
LOG.write(f"Init time: {ini_time}\n\n")
LOG.write(f"Tensorflow version: {tf.__version__}\n")
# Pull the list of files
train_df = pd.read_csv(ARGS.data_csv)
images = [os.path.join(ARGS.data_dir, name) for name in train_df[ARGS.image_column].to_list()]
labels = train_df[ARGS.label_column].to_list()
if ARGS.classes is None:
#classes = len(np.unique(labels))
classes = max(labels) + 1
else:
classes = ARGS.classes
# Split training/test sets
# Returns ImageSet instances for each set and input shape
training_set, validation_set, input_shape = split_and_resize(
images=images,
labels=labels,
test_ratio=ARGS.test_ratio,
input_shape=(ARGS.image_height, ARGS.image_width, ARGS.image_channels),
auto_resize=ARGS.auto_resize,
index_first=ARGS.index_first,
log=LOG)
# Create a mirrored strategy
cdo_dict = {
"all": tf.distribute.NcclAllReduce(),
"hierarchical": tf.distribute.HierarchicalCopyAllReduce(),
"one": tf.distribute.ReductionToOneDevice(reduce_to_device="/gpu:0")
}
strategy = tf.distribute.MirroredStrategy(
cross_device_ops=cdo_dict[ARGS.cross_dev_ops])
atexit.register(strategy._extended._collective_ops._pool.close) # type: ignore
gpu_count = strategy.num_replicas_in_sync
LOG.write(f"Number of devices: {gpu_count}\n")
# Build the model
classifier_activation = 'sigmoid'
loss_type = 'sparse_categorical_crossentropy'
lst_metrics = ['sparse_categorical_accuracy']
lr_rate = 0.01
with strategy.scope():
#model = build_image_classifier(
# base_model=base_model,
# classes=classes,
# input_shape=input_shape,
# classifier_activation=classifier_activation,
# dropout=0.1)
model = base_model(
weights=None,
classes=classes,
input_shape=input_shape,
classifier_activation=classifier_activation,
include_top=True)
opt = tf.keras.optimizers.Adam(learning_rate=lr_rate)
model.compile(
loss=loss_type,
optimizer=opt,
metrics=lst_metrics,
run_eagerly=ARGS.run_eagerly)
# Print Model Summary
print(model.summary())
# Determine batch size if auto-batch enabled
# Auto-batch will not run if no GPU present
if not ARGS.auto_batch or not tf.config.list_physical_devices('GPU'):
batch_size = ARGS.batch_size
else:
batch_size = get_max_batch_size(model, gpu_count, unit="mebi", log=LOG, batch_by_gpu=ARGS.batch_by_gpu, bin_batches=ARGS.bin_batches)
# Initialize settings for training
train_steps = int(np.ceil(training_set.count / batch_size))
val_steps = int(np.ceil(validation_set.count / batch_size))
# Log steps
LOG.write(f"train_steps: {train_steps}\n")
LOG.write(f"val_steps: {val_steps}\n\n")
# Create the data generators
train_dataset = tf.data.Dataset.from_generator(
training_set.generate_dataset,
output_signature=(
tf.TensorSpec(shape=training_set.input_shape, dtype=tf.float32),
tf.TensorSpec(shape=(), dtype=tf.float32)
)).batch(batch_size, drop_remainder=False)
val_dataset = tf.data.Dataset.from_generator(
validation_set.generate_dataset,
output_signature=(
tf.TensorSpec(shape=validation_set.input_shape, dtype=tf.float32),
tf.TensorSpec(shape=(), dtype=tf.float32)
)).batch(batch_size, drop_remainder=False)
options = tf.data.Options()
options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.DATA
train_dataset = train_dataset.with_options(options)
val_dataset = val_dataset.with_options(options)
# Train the model
train_start_time = datetime.now()
LOG.write(f"Training start time: {train_start_time}\n")
LOG.write(f"Elapsed: {train_start_time - ini_time}\n")
model_checkpoint = tf.keras.callbacks.ModelCheckpoint(
'./' + ARGS.output + '.h5',
monitor='sparse_categorical_accuracy',
verbose=1,
save_best_only=True)
epoch_time_callback = EpochTimeCallback(log=LOG)
H = model.fit(
x=train_dataset,
steps_per_epoch=train_steps,
validation_data=val_dataset,
validation_steps=val_steps,
epochs=ARGS.epochs,
batch_size=batch_size,
callbacks=[model_checkpoint, epoch_time_callback])
# Save loss history
loss_history = np.array(H.history['loss'])
np.savetxt('./' + ARGS.output + '_loss.csv', loss_history, delimiter=",")
end_time = datetime.now()
LOG.write(f"\nEnd time: {end_time}\n")
LOG.write(f"Training time: {end_time - train_start_time}\n")
LOG.write(f"Total elapsed: {end_time - ini_time}")
LOG.close()
if __name__ == '__main__':
main()