forked from anna-alemany/VASAseq
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy path05_labelTransfer_Silhouette_Dex.py
382 lines (331 loc) · 19.7 KB
/
05_labelTransfer_Silhouette_Dex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
#!/usr/bin/env python
# coding: utf-8
import sys, os
import pandas as pd
import numpy as np
from pandas.io.parsers import read_csv
from collections import Counter
import plot_aautils as plaa
import scanpy as sc
import sc_aautils as scaa
from sklearn.metrics import silhouette_score
import scipy.spatial.distance as distance
from pandarallel import pandarallel
import matplotlib.pyplot as plt
plt.ion()
try:
timepoint = sys.argv[1]
except:
sys.exit("Please, provide timepoint: (E65, E75, E85)")
if timepoint == 'E65':
nCellsClusters = 4
elif timepoint == 'E75':
nCellsClusters = 9
elif timepoint == 'E85':
nCellsClusters = 9
lfc_th = 1; pv_th=1e-2
th_score_10x = 0.4; th_score_vasa = 0.2
inputDirUMAPs = '../'+timepoint+'/res_scanpy_merged_2021_final/'
scanpyDirVASA = 'res_scanpy_all_2021_noHistones'
scanpyDirPJ = 'res_scanpy_all_2021_v2'
# # Read UMAPS with all metadata
ux = read_csv(inputDirUMAPs + '/PJ_su_All_UmapMeta_'+timepoint+'.tsv', sep = '\t', index_col = 0)
uv = read_csv(inputDirUMAPs + '/VASA_su_All_UmapMeta_'+timepoint+'.tsv', sep = '\t', index_col = 0)
#plt.hist(uv['x2v_score_3su'], bins = 100, alpha = 0.5, label = 'vasa')
#plt.hist(ux['v2x_score_3su'], bins = 100, alpha = 0.5, label = '10x')
# # Read scanpy objects
vsc = {}
for biotype in ['All','ProteinCoding','lncRNA']:
for readtype in ['su','s','u']:
print(biotype, readtype)
bio = biotype + '-' + readtype
vsc[bio] = scaa.read_h5ad_zipped('../'+timepoint+'/'+scanpyDirVASA+'/VASA_'+readtype+'_'+biotype+'_'+timepoint+'.h5ad')
vsc[bio] = vsc[bio][:, ['-' not in idx for idx in vsc[bio].var.index] ]
xsc = {}
for biotype in ['All','ProteinCoding','lncRNA']:
for readtype in ['su','s','u']:
bio = biotype + '-' + readtype
xsc[bio] = scaa.read_h5ad_zipped('../../pijuansala/'+timepoint+'/'+scanpyDirPJ+'/PJ_'+readtype+'_'+biotype+'_'+timepoint+'.h5ad')
xsc[bio] = xsc[bio][:, ['-' not in idx for idx in xsc[bio].var.index] ]
# # plot umaps
def plotTransferX2V(axs, ux, uv, th_score = th_score_vasa):
axs[0].scatter(ux[ 'umap1'], ux['umap2'], c = 'silver', s = 3, label = '_nolabel_', rasterized = True)
axs[1].scatter(uv[ 'umap1'], uv['umap2'], c = 'silver', s = 3, label = '_nolabel_', rasterized = True)
for i, cl in enumerate(sorted(set(uv['x2v_assigned_3su']))):
if cl != -1:
cx = ux[ux['leiden_clean_manhattan']==cl].index
cv = uv[(uv['x2v_assigned_3su']==cl)&(uv['x2v_score_3su']>th_score)].index
axs[0].scatter(ux.loc[cx, 'umap1'], ux.loc[cx,'umap2'], c = plaa.colors()[i], s = 3, label = cl)
axs[1].scatter(uv.loc[cv, 'umap1'], uv.loc[cv,'umap2'], c = plaa.colors()[i], s = 3, label = cl)
axs[0].text(ux.loc[cx, 'umap1'].mean(), ux.loc[cx,'umap2'].mean(), int(cl), va = 'center', ha = 'center')
axs[1].text(uv.loc[cv, 'umap1'].mean(), uv.loc[cv,'umap2'].mean(), int(cl), va = 'center', ha = 'center')
for ax in axs:
ax.grid(False); ax.set_xticks([]); ax.set_yticks([])
axs[0].set_title('10x'); axs[1].set_title('vasa')
return axs
def plotTransferV2X(axs, ux, uv, th_score = th_score_10x):
axs[1].scatter(ux[ 'umap1'], ux['umap2'], c = 'silver', s = 3, label = '_nolabel_', rasterized = True)
axs[0].scatter(uv[ 'umap1'], uv['umap2'], c = 'silver', s = 3, label = '_nolabel_', rasterized = True)
for i, cl in enumerate(sorted(set(ux['v2x_assigned_3su']))):
if cl != -1:
cv = uv[uv['leiden_clean_manhattan']==cl].index
cx = ux[(ux['v2x_assigned_3su']==cl)&(ux['v2x_score_3su']>th_score)].index
axs[0].scatter(uv.loc[cv, 'umap1'], uv.loc[cv,'umap2'], c = plaa.colors()[i], s = 3, label = cl)
axs[1].scatter(ux.loc[cx, 'umap1'], ux.loc[cx,'umap2'], c = plaa.colors()[i], s = 3, label = cl)
axs[1].text(ux.loc[cx, 'umap1'].mean(), ux.loc[cx,'umap2'].mean(), int(cl), va = 'center', ha = 'center')
axs[0].text(uv.loc[cv, 'umap1'].mean(), uv.loc[cv,'umap2'].mean(), int(cl), va = 'center', ha = 'center')
for ax in axs:
ax.grid(False); ax.set_xticks([]); ax.set_yticks([])
axs[1].set_title('10x'); axs[0].set_title('vasa')
return axs
fig, axs = plaa.template_plot(ncols = 2, nrows = 2, figsize = (1.5*2*3*1.6, 1.5*2*3))
plotTransferX2V(axs[0], ux, uv)
plotTransferV2X(axs[1], ux, uv)
plt.savefig(inputDirUMAPs + '/umap_labeltransfers.pdf', bbox_inches = 'tight')
plt.close()
# # Creation of single clusters
fux = ux[ux['v2x_score_3su']>th_score_10x].copy()
fuv = uv[uv['x2v_score_3su']>th_score_vasa].copy()
print(ux.shape, uv.shape, '=> dimensions before score filtering (10x, vasa)')
print(fux.shape, fuv.shape, '=> dimensions after score filtering (10x, vasa)')
def plotTransferMergedV2X(axs, ux, uv, fux, fuv, minCells = 0):
axs[1].scatter(ux[ 'umap1'], ux['umap2'], c = 'silver', s = 3, label = '_nolabel_', rasterized = True)
axs[0].scatter(uv[ 'umap1'], uv['umap2'], c = 'silver', s = 3, label = '_nolabel_', rasterized = True)
j = 0
for i, cl in enumerate(sorted(set(list(fux['merged_cluster'])+list(fuv['merged_cluster'])))):
if cl != -1:
cv = fuv[fuv['merged_cluster']==cl].index
cx = fux[fux['merged_cluster']==cl].index
if len(cv) > minCells and len(cx) > minCells:
j += 1
axs[0].scatter(fuv.loc[cv, 'umap1'], fuv.loc[cv,'umap2'], c = plaa.colors()[j], s = 3, label = cl)
axs[1].scatter(fux.loc[cx, 'umap1'], fux.loc[cx,'umap2'], c = plaa.colors()[j], s = 3, label = cl)
for ax in axs:
ax.grid(False); ax.set_xticks([]); ax.set_yticks([])
axs[1].set_title('10x-'+str(minCells)); axs[0].set_title('vasa-'+str(minCells))
return axs
def cellCounter(fux, fuv, minCells = 0):
jx = 0; jv = 0
for i, cl in enumerate(sorted(set(list(fux['merged_cluster'])+list(fuv['merged_cluster'])))):
if cl != -1:
cv = fuv[fuv['merged_cluster']==cl].index
cx = fux[fux['merged_cluster']==cl].index
if len(cv) > minCells and len(cx) > minCells:
jx += len(cx); jv += len(cv)
return jx, jv
def cellSelector(fux, fuv, minCells = 0):
jx = []; jv = []
for i, cl in enumerate(sorted(set(list(fux['merged_cluster'])+list(fuv['merged_cluster'])))):
if cl != -1:
cv = fuv[fuv['merged_cluster']==cl].index
cx = fux[fux['merged_cluster']==cl].index
if len(cv) > minCells and len(cx) > minCells:
jx += list(cx); jv += list(cv)
return jx, jv
fux['merged_cluster'] = ['-'.join([str(fux.loc[idx,'leiden_clean_manhattan']),str(int(fux.loc[idx,'v2x_assigned_3su']))]) for idx in fux.index]
fuv['merged_cluster'] = ['-'.join([str(int(fuv.loc[idx,'x2v_assigned_3su'])),str(int(fuv.loc[idx,'leiden_clean_manhattan']))]) for idx in fuv.index]
print(len(set(fux['merged_cluster'])), len(set(fuv['merged_cluster'])),'total merged clusters (10x and vasa, resp.)')
fux.to_csv(inputDirUMAPs + '/PJ_su_All_UmapMeta_MERGEDCLUSTERS_'+timepoint+'.tsv', sep = '\t')
fuv.to_csv(inputDirUMAPs + '/VASA_su_All_UmapMeta_MERGEDCLUSTERS_'+timepoint+'.tsv', sep = '\t')
# SHOULD I TRY TO MAKE CLUSTERS SMALLER HERE, USING THE SCANPY TABLES?
# check the effect of filter by joint-cluster size
fig, axs = plaa.template_plot(ncols = 2, nrows = 2*nCellsClusters, figsize = (1.5*2*3*1.6, 1.5*3*2*nCellsClusters))
for ax, nc in zip(axs, range(1,2*nCellsClusters+1)):
plotTransferMergedV2X(ax, ux, uv, fux, fuv, minCells=nc)
ax[1].legend(loc = 2, bbox_to_anchor = (1,1), ncol = 2)
plt.savefig(inputDirUMAPs + '/umap_labeltransfer_ncellsFilters.pdf', bbox_inches = 'tight')
plt.close('all')
cdf = pd.DataFrame({cl: {'10x': Counter(fux['merged_cluster'])[cl], 'vasa': Counter(fuv['merged_cluster'])[cl]} for cl in set(list(set(fux['merged_cluster']))+list(set(fuv['merged_cluster'])))}).T
cdf = cdf.loc[cdf.sum(axis=1).sort_values(ascending=False).index]
cdf.to_csv(inputDirUMAPs + '/ncells_merged-cluster.tsv', sep = '\t')
ncdf = pd.DataFrame({i: cdf.loc[cdf.index[(cdf>i).sum(axis=1)==2]].sum() for i in range(25)}).T
ncdf['clusters'] = [len(cdf.loc[cdf.index[(cdf>i).sum(axis=1)==2]]) for i in ncdf.index]
fig, ax = plaa.template_plot()
im = ax.scatter(ncdf.index, ncdf['10x'], label = '10x', marker = 'o', c = ncdf['clusters'])
ax.scatter(ncdf.index, ncdf['vasa'], label = 'vasa', marker = 'v', c = ncdf['clusters'])
ax.set_xlabel('cell number threshold')
ax.set_ylabel('surviving cells')
plt.colorbar(im, ax = ax, label = 'number of clusters')
ax.legend()
plt.savefig(inputDirUMAPs + '/scatter_survivingCells_bilabel.pdf', bbox_inches = 'tight')
plt.close()
print(cellCounter(fux, fuv, minCells = nCellsClusters))
xcells, vcells = cellSelector(fux, fuv, minCells = nCellsClusters)
ffux = fux.loc[xcells]; ffuv = fuv.loc[vcells]
ncells_surv_df = pd.DataFrame({'10x': Counter(ffux['merged_cluster']), 'vasa': Counter(ffuv['merged_cluster'])})
print(ncells_surv_df)
xcells = []; vcells = []
for cl in ncells_surv_df.index:
n = ncells_surv_df.loc[cl].min()
xcells += list(ffux[ffux['merged_cluster'] == cl].sort_values(by='v2x_score_3su', ascending=False).index[:n])
vcells += list(ffuv[ffuv['merged_cluster'] == cl].sort_values(by='x2v_score_3su', ascending=False).index[:n])
ffux = fux.loc[xcells]; ffuv = fuv.loc[vcells]
# # Silhouette scores and gene expression analysis
# ## read scanpy data
# ## Filter scanpy objects to select cells for which we have merged_clusters (2 cells at least in each protocol)
# ## also remove multigenes
fvsc = {}; fxsc = {}
for bio in vsc:
fvsc[bio] = vsc[bio][[c in ffuv.index for c in vsc[bio].obs.index],:]
fvsc[bio] = fvsc[bio][:, ['-' not in idx for idx in fvsc[bio].var.index] ]
fvsc[bio].obs['merged_cluster'] = ffuv.loc[fvsc[bio].obs.index,'merged_cluster']
print('vasa', bio, vsc[bio].shape, fvsc[bio].shape)
for bio in xsc:
fxsc[bio] = xsc[bio][[c in xcells for c in xsc[bio].obs.index],:]
fxsc[bio] = fxsc[bio][:, ['-' not in idx for idx in fxsc[bio].var.index] ]
fxsc[bio].obs['merged_cluster'] = fux.loc[fxsc[bio].obs.index,'merged_cluster']
print('10x', bio, xsc[bio].shape, fxsc[bio].shape)
# ## Silhouette score
print('average vasa silhouette score:', silhouette_score(fvsc['All-su'].obsm['X_pca'], fvsc['All-su'].obs['merged_cluster'], metric='manhattan'))
print('average 10x silhouette score:', silhouette_score(fxsc['All-su'].obsm['X_pca'], fxsc['All-su'].obs['merged_cluster'], metric='manhattan'))
pca_vasa = pd.DataFrame(fvsc['All-su'].obsm['X_pca'], index = fvsc['All-su'].obs.index)
pca_10x = pd.DataFrame(fxsc['All-su'].obsm['X_pca'], index = fxsc['All-su'].obs.index)
npca = fvsc['All-su'].uns['clean_manhattan']['params']['n_pca']
pca_vasa = pca_vasa.iloc[:, :npca]
npca = fvsc['All-su'].uns['clean_manhattan']['params']['n_pca']
pca_10x = pca_10x.iloc[:, :npca]
def my_silhouette(pcadf, labeldf):
dist_array = distance.pdist(pcadf, metric = 'cityblock')
dist_df = pd.DataFrame(distance.squareform(dist_array), columns = pcadf.index, index = pcadf.index)
pandarallel.initialize(nb_workers = 8)
adf = dist_df.parallel_apply(lambda x: dist_df.loc[x.name,labeldf[labeldf == labeldf.loc[x.name]].index].sum()/(len(labeldf[labeldf == labeldf.loc[x.name]].index)-1))
pandarallel.initialize(nb_workers = 8)
bdf = dist_df.parallel_apply(lambda x: {cl: dist_df.loc[x.name,labeldf[labeldf == cl].index].mean() for cl in set(labeldf) if cl != labeldf.loc[x.name]})
bdf = pd.DataFrame(bdf.to_dict()).T
sdf = pd.DataFrame({'b': bdf.min(axis=1), 'a': adf})
sdf['s'] = sdf.apply(lambda x: (x['b']-x['a'])/np.max([x['b'],x['a']]), axis = 1)
sdf = sdf.merge(bdf, how = 'inner', left_index = True, right_index = True)
sdf['merged_cluster'] = labeldf.loc[sdf.index]
return sdf
sdf_vasa = my_silhouette(pca_vasa, fvsc['All-su'].obs['merged_cluster'])
sdf_10x = my_silhouette(pca_10x , fxsc['All-su'].obs['merged_cluster'])
sdf_10x.to_csv(inputDirUMAPs + '/silhouette_mergedClusters_10x_'+timepoint+'.tsv', sep = '\t')
sdf_vasa.to_csv(inputDirUMAPs + '/silhouette_mergedClusters_VASA_'+timepoint+'.tsv', sep = '\t')
fig, ax = plaa.template_plot()
ax.hist(sdf_vasa['s'], bins = 100, alpha = 0.5, density= True, label = 'vasa')
ax.hist(sdf_10x['s'], bins = 100, alpha = 0.5, density = True, label = '10x')
ax.set_ylabel('density')
ax.set_xlabel('silhouette score')
ax.legend()
plt.savefig(inputDirUMAPs + '/histo_silhouette.pdf', bbox_inches = 'tight')
plt.close()
kk = {cl: {'vasa': sdf_vasa.loc[fvsc['All-su'].obs[fvsc['All-su'].obs['merged_cluster']==cl].index,'s'],
'10x': sdf_10x.loc[fxsc['All-su'].obs[fxsc['All-su'].obs['merged_cluster']==cl].index,'s']
} for cl in sorted(set(fvsc['All-su'].obs['merged_cluster']))}
kk2 = []
for cl in sorted(set(fvsc['All-su'].obs['merged_cluster'])):
kk2.append(kk[cl]['vasa'].values)
kk2.append(kk[cl]['10x'].values)
msdf = pd.DataFrame({cl: {
'vasa-mean': sdf_vasa.loc[fvsc['All-su'].obs[fvsc['All-su'].obs['merged_cluster']==cl].index,'s'].mean(),
'10x-mean': sdf_10x.loc[fxsc['All-su'].obs[fxsc['All-su'].obs['merged_cluster']==cl].index,'s'].mean(),
'vasa-std': sdf_vasa.loc[fvsc['All-su'].obs[fvsc['All-su'].obs['merged_cluster']==cl].index,'s'].std(),
'10x-std': sdf_10x.loc[fxsc['All-su'].obs[fxsc['All-su'].obs['merged_cluster']==cl].index,'s'].std(),
} for cl in sorted(set(fvsc['All-su'].obs['merged_cluster']))}).T
fig, ax = plaa.template_plot(figsize = (3.6*3*1.6,3))
for i, cl in enumerate(sorted(msdf.index)):
if i == 0:
ax.scatter([i+0.1], [msdf.loc[cl,'vasa-mean']], c = plaa.colors()[i], marker = 'o', label = 'vasa')
ax.scatter([i-0.1], [msdf.loc[cl,'10x-mean']], c = plaa.colors()[i], marker = 'x', label = '10x')
else:
ax.scatter([i+0.1], [msdf.loc[cl,'vasa-mean']], c = plaa.colors()[i], marker = 'o', label = '_nolabel_')
ax.scatter([i-0.1], [msdf.loc[cl,'10x-mean']], c = plaa.colors()[i], marker = 'x', label = '_nolabel_')
ax.errorbar([i+0.1], [msdf.loc[cl,'vasa-mean']], yerr = [msdf.loc[cl,'vasa-std']], c = plaa.colors()[i])
ax.errorbar([i-0.1], [msdf.loc[cl,'10x-mean']], yerr = [msdf.loc[cl,'10x-std']], c = plaa.colors()[i])
ax.set_xticks(range(len(msdf.index))); ax.set_xticklabels(msdf.index, rotation = 90)
ax.set_xlabel('clusters')
ax.set_ylabel('mean silhouette score')
ax.legend()
plt.savefig(inputDirUMAPs + '/scatter_silhouette.pdf', bbox_inches = 'tight')
plt.close()
### FIND A WAY TO REDUCE CLUSTER NUMBER IF NEEDED
### to do ###
# ## differential gene expression analysis
for bio in fvsc:
print([(bio, fvsc[bio].raw.shape, fvsc[bio].shape) for bio in fvsc])
msc = {}
for bio in fxsc:
rvsc = scaa.getRawData(fvsc[bio])
rxsc = scaa.getRawData(fxsc[bio])
msc[bio] = scaa.concatSCobj(rvsc, rxsc, ['vasa','10x'])
print(bio, msc[bio].shape, rvsc.shape, rxsc.shape, rxsc.shape[0]+rvsc.shape[0]-msc[bio].shape[0])
print('merged_clusters', len(set(msc[bio].obs['merged_cluster'])))
# ## Differential gene expression between clusters
dex_vasa = {}; dex_10x = {}
for bio in fvsc:
print(bio,'vasa')
dex_vasa[bio] = scaa.difGeneExpr(fvsc[bio], clusters = ['merged_cluster'])['merged_cluster']
for bio in fxsc:
print(bio,'10x')
dex_10x[bio] = scaa.difGeneExpr(fxsc[bio], clusters = ['merged_cluster'])['merged_cluster']
for bio in dex_vasa:
os.system('mkdir ' + inputDirUMAPs + '/dexTables/')
with pd.ExcelWriter(inputDirUMAPs + '/dexTables/dex_vasa_'+bio+'_'+timepoint+'.xlsx') as writer:
for cl in dex_vasa[bio]:
dex_vasa[bio][cl].to_excel(writer, sheet_name=cl)
for bio in dex_10x:
with pd.ExcelWriter(inputDirUMAPs + '/dexTables/dex_10x_'+bio+'_'+timepoint+'.xlsx') as writer:
for cl in dex_10x[bio]:
dex_10x[bio][cl].to_excel(writer, sheet_name=cl)
# ## Differential gene expression analysis between protocols
dex_x2v = {}
dex_v2x = {}
for bio in dex_10x:
dex_x2v[bio] = {cl: '' for cl in set(msc[bio].obs['merged_cluster'])}
dex_v2x[bio] = {cl: '' for cl in set(msc[bio].obs['merged_cluster'])}
keys = ['names', 'logfoldchanges', 'pvals', 'pvals_adj', 'scores']
for cl in set(msc[bio].obs['merged_cluster']):
tmp_df = msc[bio][msc[bio].obs['merged_cluster']==cl,:]
sc.tl.rank_genes_groups(tmp_df, 'batch', groups=['vasa'], reference='10x', method='t-test', n_genes = 500)
dex_v2x[bio][cl] = pd.DataFrame({k: [tmp_df.uns['rank_genes_groups'][k][i][0] for i in range(200)] for k in keys}).set_index('names')
sc.tl.rank_genes_groups(tmp_df, 'batch', groups=['10x'], reference='vasa', method='t-test', n_genes = 500)
dex_x2v[bio][cl] = pd.DataFrame({k: [tmp_df.uns['rank_genes_groups'][k][i][0] for i in range(200)] for k in keys}).set_index('names')
with pd.ExcelWriter(inputDirUMAPs + '/dexTables/dex_'+bio+'_v2x_cl'+'_'.join([cl,timepoint])+'.xlsx') as writer:
dex_v2x[bio][cl].to_excel(writer, sheet_name='ref-10x')
dex_x2v[bio][cl].to_excel(writer, sheet_name='ref-vasa')
fig, axs = plaa.template_plot(ncols = 2, figsize=(2*2*3*1.6,2*3))
for ax, df in zip(axs, [ux, uv]):
ax.scatter(df['umap1'], df['umap2'], s = 1, color = 'silver')
ax.grid(False); ax.set_xticks([]); ax.set_yticks([])
for ax, df in zip(axs, [fux, fuv]):
for i, cl in enumerate(sorted(set(fux.loc[xcells]['merged_cluster']))):
cells = df[df['merged_cluster']==cl].index
ax.scatter(df.loc[cells,'umap1'], df.loc[cells,'umap2'], s = 5, color = plaa.colors()[i], label = cl)
ax.text(df.loc[cells,'umap1'].mean(),df.loc[cells,'umap2'].mean(), cl, fontsize = 8, va = 'center', ha = 'center')
lgnd = axs[0].legend(loc = 2, bbox_to_anchor = (0,0), ncol = 10)
for handle in lgnd.legendHandles:
handle.set_sizes([25.0])
axs[0].set_title('10x'); axs[1].set_title('VASA')
plt.savefig(inputDirUMAPs + '/umap_filtered-merged-clusters.pdf', bbox_inches = 'tight')
plt.close('all')
# ## Heatmap of differential gene expression analysis... what do we show here?
lfc_dex_df = {}
for bio in dex_10x:
lfc_dex_df[bio] = pd.DataFrame(columns = ['10x','vasa'], index = sorted(dex_10x[bio]))
for cl in sorted(dex_10x[bio]):
fdexvasa = dex_vasa[bio][cl][(dex_vasa[bio][cl]['logfoldchanges']>lfc_th)&(dex_vasa[bio][cl]['pvals_adj']<pv_th)]
fdex10x = dex_10x[bio][cl][(dex_10x[bio][cl]['logfoldchanges']>lfc_th)&(dex_10x[bio][cl]['pvals_adj']<pv_th)]
lfc_dex_df[bio].loc[cl] = [len(fdex10x), len(fdexvasa)]
fig, maxs = plaa.template_plot(ncols = 3, nrows = 3, figsize=(3*3*1.6,3*3))
axs = maxs.reshape(9)
for bio, ax in zip(lfc_dex_df, axs):
for i, idx in enumerate(lfc_dex_df[bio].index):
ax.text(lfc_dex_df[bio].loc[idx,'vasa'], lfc_dex_df[bio].loc[idx,'10x'], idx, va = 'center', ha = 'center')
ax.scatter([lfc_dex_df[bio].loc[idx,'vasa']], [lfc_dex_df[bio].loc[idx,'10x']], c = plaa.colors()[i], s = 75)
ax.plot(np.linspace(0,lfc_dex_df[bio].max().max(),200), np.linspace(0,lfc_dex_df[bio].max().max(),200), c = 'silver')
ax.set_title(bio)
maxs[-1][1].set_xlabel('total diff expr genes (vasa)')
maxs[1][0].set_ylabel('total diff expr genes (10x)')
plt.savefig(inputDirUMAPs + '/scatter_detectedMarkers.pdf', bbox_inches = 'tight')
plt.close('all')
lfc_df = pd.DataFrame({bio: np.log2((lfc_dex_df[bio]['vasa']+1e-3)/(lfc_dex_df[bio]['10x']+1e-3)) for bio in lfc_dex_df})
fig, ax = plaa.template_plot(figsize = (3*1.6, 3*len(lfc_df)/20))
im = ax.imshow(lfc_df, aspect = 'auto', cmap = 'RdBu_r', vmin = -5, vmax = 5)
cbar = plt.colorbar(im, ax = ax, label = 'log2(vasa markers / 10x markers)', shrink = 0.8)
ax.set_xticks(range(len(lfc_df.columns))); ax.set_xticklabels(lfc_df.columns, rotation = 90)
ax.grid(False)
ax.set_ylabel('merged cluster'); ax.set_yticks(range(len(lfc_df.index))); ax.set_yticklabels(lfc_df.index)
cxra = cbar.get_ticks()
cbar.set_ticks(cxra)
cbar.set_ticklabels(['<'+str(cxra[0])] + [x for x in cxra[1:-1]] + ['>'+str(cxra[-1])])
plt.savefig(inputDirUMAPs + '/heatmap_detectedMarkers.pdf', bbox_inches = 'tight')