forked from anna-alemany/VASAseq
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy path06_masterUMAP.py
437 lines (372 loc) · 16.4 KB
/
06_masterUMAP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
#!/usr/bin/env python
# ## Libraries
import sys, os
import numpy as np
import pandas as pd
from pandas.io.parsers import read_csv
from collections import Counter
import scanpy as sc
import bbknn
import plot_aautils as plaa
import sc_aautils as scaa
import pickle
import itertools as it
from scipy.stats import fisher_exact as fisher_exact
import glob
import matplotlib.pyplot as plt
import scipy
from pandarallel import pandarallel
import multiprocessing
import scipy.spatial.distance as scdist
from scipy.optimize import root
from umap.umap_ import smooth_knn_dist # returns sigmas and ros
plt.ion()
old_k = 80
new_k = 30
Ncells = 50000
onlySpliced = True
markers_or_hgv = 'hgv'
outdir = '../Emerged'
os.system('mkdir '+outdir)
# option 1: seqPast
metric = 'manhattan'
tNN = {'E6.5': ['E6.5'],
'E7.5': ['E7.5','E6.5'],
'E8.5': ['E8.5','E7.5'],
'E9.5': ['E9.5','E8.5']}
output = 'test_seqPast_'+metric+'_s'
# option 2: seqFuture
#metric = 'manhattan'
#tNN = {'E6.5': ['E6.5','E7.5'],
# 'E7.5': ['E7.5','E8.5'],
# 'E8.5': ['E8.5','E9.5'],
# 'E9.5': ['E9.5']}
#output = 'test_seqFuture_manhattan_onlySpliced'
# option 3: seqSeq
#metric = 'manhattan'
#tNN = {'E6.5': ['E6.5','E7.5'],
# 'E7.5': ['E7.5','E8.5','E6.5'],
# 'E8.5': ['E8.5','E9.5','E7.5'],
# 'E9.5': ['E9.5','E8.5']}
#output = 'test_seqSeq_manhattan_onlySpliced'
# input meta
scanpyDir = 'res_scanpy_all_2021_v2/'
inputScanpyE65 = '../E65/' + scanpyDir
inputScanpyE75 = '../E75/' + scanpyDir
inputScanpyE85 = '../E85/' + scanpyDir
inputScanpyE95 = '../E95/' + scanpyDir
# timepoints
timepoints = ['E65','E75','E85','E95']
scanpyinputs = [inputScanpyE65,inputScanpyE75,inputScanpyE85,inputScanpyE95]
# ============================================================================ #
# Identify markers
def findMarker(dex, clusterAlgorithm = 'leiden', lfc_th = 1, pv_th = 1e-2):
markers = []
for cl in dex[clusterAlgorithm]:
m = dex[clusterAlgorithm][cl][(dex[clusterAlgorithm][cl]['logfoldchanges'] > lfc_th) & (dex[clusterAlgorithm][cl]['pvals_adj'] < pv_th)].index
markers += list(m)
markers = list(set(markers))
return markers
markers = {'manhattan': {}, 'correlation': {}}
for timepoint, p2scanpy in zip(timepoints, scanpyinputs):
print('markers for ', timepoint)
if onlySpliced:
if os.path.isfile(p2scanpy + '/dex_VASA_s_All_'+timepoint+'.pickle.gz'):
os.system('gunzip '+p2scanpy + '/dex_VASA_s_All_'+timepoint+'.pickle.gz')
dexfile = glob.glob(p2scanpy + '/dex_VASA_s_All_'+timepoint+'.pickle')
dex = pickle.load(open(dexfile[0], 'rb'))
os.system('gzip '+p2scanpy + '/dex_VASA_s_All_'+timepoint+'.pickle')
else:
if os.path.isfile(p2scanpy + '/dex_VASA_su_All_'+timepoint+'.pickle.gz'):
os.system('gunzip '+p2scanpy + '/dex_VASA_su_All_'+timepoint+'.pickle.gz')
dexfile = glob.glob(p2scanpy + '/dex_VASA_su_All_'+timepoint+'.pickle')
dex = pickle.load(open(dexfile[0], 'rb'))
os.system('gzip '+p2scanpy + '/dex_VASA_su_All_'+timepoint+'.pickle')
markers['manhattan'][timepoint] = findMarker(dex, clusterAlgorithm = 'leiden_manhattan', lfc_th = 1.1, pv_th = 1e-3)
# markers['correlation'][timepoint] = findMarker(dex, clusterAlgorithm = 'leiden_correlation')
# merge all markers into a list
print([len(markers[metric][t]) for t in markers[metric]])
all_markers = []
for t in markers[metric]:
all_markers += markers[metric][t]
all_markers = list(set(all_markers))
print(len(all_markers))
# get raw data
def getRawData(scdata):
rsc = sc.AnnData(scdata.raw.X)
rsc.var = scdata.raw.var
rsc.obs = scdata.obs
return rsc
def getPCA(scdata):
pca = pd.DataFrame(scdata.varm['PCs'], index = scdata.var.index)
n_pca = scdata.uns[metric]['params']['n_pcs']
pca = pca[pca.columns[:n_pca]]
return pca
def get_distDF(adata):
dist_df = pd.DataFrame.sparse.from_spmatrix(adata.obsp['distances'])
dist_df.columns = adata.obs.index
dist_df.index = adata.obs.index
return dist_df
# read all data ad save it in a scanpy object
adatas = {}
pcas = {}
unss = {}
for timepoint, p2scanpy in zip(timepoints, scanpyinputs):
print('reading counttables for ',timepoint)
if onlySpliced:
if os.path.isfile(p2scanpy + '/VASA_s_All_'+timepoint+'.h5ad.gz'):
os.system('gunzip '+p2scanpy + '/VASA_s_All_'+timepoint+'.h5ad.gz')
adata = sc.read_h5ad(p2scanpy + '/VASA_s_All_'+timepoint+'.h5ad')
os.system('gzip '+p2scanpy + '/VASA_s_All_'+timepoint+'.h5ad')
else:
if os.path.isfile(p2scanpy + '/VASA_su_All_'+timepoint+'.h5ad.gz'):
os.system('gunzip '+p2scanpy + '/VASA_su_All_'+timepoint+'.h5ad.gz')
adata = sc.read_h5ad(p2scanpy + '/VASA_su_All_'+timepoint+'.h5ad')
os.system('gzip '+p2scanpy + '/VASA_su_All_'+timepoint+'.h5ad')
pcas[timepoint] = getPCA(adata)
unss[timepoint] = adata.uns
adata = getRawData(adata)
print(timepoint, adata.shape)
adatas[timepoint] = adata[[i<Ncells for i,c in enumerate(adata.obs.index)],:]
# merge all timeponints
def concatSCobj(sc1, sc2, names = ['1','2']):
msc = sc1.concatenate(sc2, join = 'outer', batch_categories = None, index_unique = None)
msc.X = np.nan_to_num(msc.X, nan = 0.0, posinf = 0, neginf = 0)
return msc
mdf = adatas[timepoints[0]]
for i, t in enumerate(timepoints[1:]):
mdf = concatSCobj(mdf, adatas[t], names = [timepoints[i], timepoints[i+1]])
print('merged', mdf.shape)
mdf.obs['batch'] = [idx.rsplit('-')[0] for idx in mdf.obs.index]
# Analyze
mdf.var['n_counts'] = mdf.X.sum(axis=0)
mdf.var['n_cells'] = (mdf.X>0).sum(axis=0)
#mdf = mdf[:, mdf.var['n_cells']>2]
sc.pp.highly_variable_genes(mdf, min_mean=0.0125, max_mean=5, min_disp=0.5, n_bins = 30)
mdf.var['marker'] = [g in all_markers for g in mdf.var.index]
for x in ['id','polyA','reg', 'ubiotype','mbiotype','biotype','n_counts','n_cells']:
if x+'-1' in mdf.var.columns:
mdf.var[x] = mdf.var[x+'-1']
idcols = [c for c in mdf.var.columns if x+'-' in c]
for c in idcols:
del mdf.var[c]
mdf.raw = mdf
if markers_or_hgv == 'hgv':
mdf = mdf[:, mdf.var['highly_variable']]
elif markers_or_hgv == 'markers':
mdf = mdf[:, mdf.var['marker']]
sc.pp.regress_out(mdf, ['n_counts'])
sc.pp.scale(mdf, max_value=10)
sc.tl.pca(mdf, svd_solver='arpack', n_comps = min(150, mdf.shape[1]-50))
#sc.pl.pca(mdf, color = 'batch')
#sc.pl.pca_variance_ratio(mdf, log = True)
n_pca = 40
# normal umap
sc.pp.neighbors(mdf, n_neighbors = new_k, n_pcs = n_pca, random_state = 1971723, metric = metric)
sc.tl.umap(mdf, n_components = 2, random_state = 921225, min_dist = 0.5, spread = 1)
mdf.obsm['X_umap_standard'] = mdf.obsm['X_umap']
#sc.pl.umap(mdf, color = 'batch')#, save = 'standard.pdf')
### some checks about distances and pca's
#pca_genes = pd.DataFrame(mdf.varm['PCs'], index = mdf.var.index)
#pca_cells = pd.DataFrame(mdf.obsm['X_pca'], index = mdf.obs.index)
#dist_df = get_distDF(mdf)
#c0 = dist_df.index[0]
#c1 = dist_df.columns[dist_df.loc[c0]>0][0]
#dist_df.loc[c0,c1]
#expr_v = pd.DataFrame(mdf[[idx in [c0,c1] for idx in mdf.obs.index],:].X, columns = mdf.var.index, index = [idx for idx in mdf.obs.index if idx in [c0,c1]])
#expr2pca = pd.DataFrame(np.dot(expr_v, pca_genes), index = expr_v.index)
#pca_cells.loc[[c0,c1]] # expr2pca and pca_cells are practically the same
#np.abs(pca_cells.loc[c0]-pca_cells.loc[c1]).sum()
#np.abs(pca_cells.loc[c0,:40]-pca_cells.loc[c1,:40]).sum() # <= this is it
#np.abs(expr2pca.loc[c0,:40]-expr2pca.loc[c1,:40]).sum() # <= this is also it
#import scipy.spatial.distance as scdist
#scdist.pdist(expr2pca[range(40)], metric = 'cityblock')
###
# new way to compute distances
def wagner_distances(x): # cell, mdf = mdf, pcas = pcas, old_k = old_k, new_k = new_k):
cell, mdf, pcas, old_k, new_k = x
tref = mdf.obs.loc[cell,'batch']
pca_gene = pcas[tref.replace('.','')]
cells = mdf.obs.index[[x in tNN[tref] for x in mdf.obs['batch']]]
expr_v = pd.DataFrame(mdf.raw[[idx in cells for idx in mdf.obs.index],:].X, columns = mdf.raw.var.index, index = [idx for idx in mdf.obs.index if idx in cells])
expr_v = expr_v[pca_gene.index]
expr2pca = pd.DataFrame(np.dot(expr_v, pca_gene), index = expr_v.index)
print(cell)
vd = expr2pca.apply(lambda x: scdist.pdist([x, expr2pca.loc[cell]], metric = 'cityblock')[0], axis = 1)
vd = vd.sort_values()[:old_k]
d_min = vd[vd>0].min()#; d_std = vd[vd>0].std()
vd = vd[vd < 3*d_min]
vd = vd.sort_values()[:new_k]
# distances = pd.Series({x: vd.loc[x] if x in vd.index else 0 for x in mdf.obs.index})
return vd # distances
def wagner_distances_v2(tref, mdf = mdf, pcas = pcas, old_k = old_k, new_k = new_k):
pca_gene = pcas[tref.replace('.','')]
cells = mdf.obs.index[[x in tNN[tref] for x in mdf.obs['batch']]]
expr_v = pd.DataFrame(mdf.raw[[idx in cells for idx in mdf.obs.index],:].X, columns = mdf.raw.var.index, index = [idx for idx in mdf.obs.index if idx in cells])
expr_v = expr_v[pca_gene.index]
expr2pca = pd.DataFrame(np.dot(expr_v, pca_gene), index = expr_v.index)
scsub = sc.AnnData(expr_v)
scsub.obs = mdf.obs.loc[scsub.obs.index]
scsub.varm['PCs'] = np.array(pca_gene)
scsub.obsm['X_pca'] = np.array(expr2pca)
scsub.uns = unss[tref.replace('.','')]
sc.pp.neighbors(scsub, n_neighbors = new_k, n_pcs = len(pca_gene.columns)-1, random_state = 1971723, metric = metric)
distdf = get_distDF(scsub)
cells = mdf.obs.index[[x in tref for x in mdf.obs['batch']]]
return distdf.loc[cells]
#pandarallel.initialize(nb_workers = 8)
#new_dist_df = mdf.obs.head().parallel_apply(lambda x: wagner_distances(x.name), axis = 1) # does not work
#new_dist_df = mdf.obs.apply(lambda x: wagner_distances(x.name), axis = 1) # super slow
#pool = multiprocessing.Pool(8) #threads
#for idx, (vd) in enumerate(pool.imap_unordered(wagner_distances,[(idx, mdf, pcas, old_k, new_k) for idx in mdf.obs.index[:10]])): # did not work
# print(vd[0])
#new_dist_df = mdf.obs.apply(lambda x: wagner_distances((x.name, mdf, pcas, old_k, new_k)), axis = 1) # at the end this is decent, but still slow
distdfs = {t: wagner_distances_v2(t) for t in tNN}
new_dist_df = pd.concat([distdfs['E6.5'], distdfs['E7.5'], distdfs['E8.5'], distdfs['E9.5']], sort = False)
new_dist_df = new_dist_df.fillna(0)
mdf.obsp['distances'] = scipy.sparse.csr_matrix(new_dist_df.values)
###############
# another aproach (no pca space correction)
# new connections
#sc.pp.neighbors(mdf, n_neighbors = old_k, n_pcs = n_pca, random_state = 1971723, metric = metric)
# now, modify distances
#dist_df = get_distDF(mdf)
#def reshape_distance_v(dist_df_v, new_k = new_k, tNN = tNN):
# cell = dist_df_v.name
# print(cell)
# dist_df_v = pd.Series(np.array(dist_df_v), index = dist_df_v.index)
# t_ref = cell.rsplit('-')[0] # timepoint of reference cell
# vd = dist_df_v[dist_df_v>0].copy()# vector kNN distances
# vt = pd.Series({idx: idx.rsplit('-')[0] for idx in vd.index}) # vector times
# vtc = vt.apply(lambda x: x in tNN[t_ref])
# # 1) clean neighbors that are not connected in a sequential temporal appraoch
# vd = vd*vtc
# # 2) keep distances if dij < 3*min(dik)
# if (vd>0).sum() > 1:
# d_min = vd[vd>0].min()
# d_std = vd[vd>0].std()
## vd = (vd <= 3*d_min)*vd
# vd = (vd <= d_min + 3.5*d_std)*vd
# # 3) some extra conditions that for now i dont implement
# # 4) reduce number of neighbors to new_k
# if (vd>0).sum() > 0:
# d_th = (vd[vd>0]).sort_values().iloc[min([new_k-1, sum(vd>0)-1])]
# vd = (vd<=d_th)*vd
# # reassign to dist_df_v
# for cell in vd.index:
# dist_df_v.loc[cell] = vd.loc[cell]
# return dist_df_v
#new_dist_df = dist_df.apply(lambda x: reshape_distance_v(x), axis = 1)
#from pandarallel import pandarallel
#pandarallel.initialize(nb_workers = 8)
#new_dist_df = dist_df.parallel_apply(lambda x: reshape_distance_v(x), axis = 1)
#mdf.obsp['distances'] = scipy.sparse.csr_matrix(new_dist_df.values)
new_dist_df = new_dist_df.astype(float)
pandarallel.initialize(nb_workers = 8)
rho = new_dist_df.parallel_apply(lambda x: x[x>0].min(), axis = 1) # i can also do this in the dictionary...
###
def findSigma_v1(cell, new_dist_v, rho, new_k):
if len(new_dist_v) <= 1:
sigma = 1
else:
log2k = np.log2(new_k)
eps = 1e-3
sigma1 = np.array(new_dist_v).min()/100; sigma2 = new_k
exps = np.exp(-(new_dist_v-rho))
f1 = (exps**(1./sigma1)).sum()-log2k; f2 = (exps**(1./sigma2)).sum()-log2k
i = 0
while abs(sigma2-sigma1)>eps:
if f1*f2 > 0 and f1 > 0:
print('ei')
break
elif f2*f2 > 0 and f2 < 0:
sigma2 *= 10
i += 1
if i == 5:
sigma1 = sigma2 = sigma = 1000
break
elif f1*f2 < 0:
sigma = 0.5*(sigma1+sigma2)
f = (exps**(1./sigma)).sum()-log2k
if f > 0:
sigma2 = sigma; f2 = f
elif f < 0:
sigma1 = sigma; f1 = f
return sigma
def fun_sigma(x, a, b, c):
return np.exp(-(a-b)/x).sum()-c
def findSigma_v2(cell, new_dist_v, rho, new_k):
if len(new_dist_v) <= 1:
sigma = 1
else:
sigma = root(lambda x: fun_sigma(x, new_dist_v, rho, np.log2(new_k)), x0 = 0.5*new_k).x[0]
return sigma
def findSigma_v3(cell, new_dist_v, rho, new_k):
if len(new_dist_v) <= 1:
sigma = 1
else:
n_iter = 100
eps = 1e-3 # min([1e-2, (new_dist_df.loc[cell,knn].sort_values()[-1]-new_dist_df.loc[cell,knn].sort_values()[-2])/100])
lo = 0; hi = new_k
sigma = 0.5*(lo + hi)
log2k = np.log2(new_k)
exps = np.exp(-(new_dist_v-rho))
f = (exps**(1./sigma)).sum()-log2k
for n in range(n_iter):
# while np.abs(f) > eps:
if np.abs(f) < eps:
break
if f > 0:
hi = sigma
else:
lo = sigma
sigma = 0.5*(lo + hi)
f = (exps**(1./sigma)).sum()-log2k
return sigma
import time
cell = np.random.choice(new_dist_df.index)
print('speed test: cell, sigma, computing time')
for fun in [findSigma_v1, findSigma_v2, findSigma_v3]:
t0 = time.time();
s = fun(cell, new_dist_df.loc[cell,new_dist_df.columns[new_dist_df.loc[cell]>0]], rho.loc[cell], new_k)
t1 = time.time()
print(cell, s, t1-t0)
pandarallel.initialize(nb_workers = 8)
sigma = new_dist_df.parallel_apply(lambda x: findSigma_v1(x.name, new_dist_df.loc[x.name,new_dist_df.columns[new_dist_df.loc[x.name]>0]], rho.loc[x.name], new_k), axis = 1)
# try umap function
#sigmaumap, rhoumap = smooth_knn_dist(np.array(new_dist_df), new_k)
#rho = pd.Series(rhoumap, index = new_dist_df.index)
#sigma = pd.Series(sigmaumap, index = new_dist_df.index)
##
def directed_weigths(new_dist_cell, rho_cell, sigma_cell):
knn = new_dist_cell[new_dist_cell>0].index
cv = pd.Series(0, index = new_dist_cell.index)
for c in knn:
cv.loc[c] = np.exp(-(new_dist_cell.loc[c]-rho_cell)/sigma_cell)
return cv
pandarallel.initialize(nb_workers = 8)
wdf = new_dist_df.parallel_apply(lambda x: directed_weigths(x, rho.loc[x.name], sigma.loc[x.name]), axis = 1)
bdf = wdf + wdf.T - wdf * wdf.T
mdf.obsp['connectivities'] = scipy.sparse.csr_matrix(bdf.values)
mdf.uns['neighbors']['params']['n_neighbors'] = new_k
#cdf = np.exp(-max([0,new_dist_df.T-rho])/sigma)
sc.tl.umap(mdf, n_components = 2, random_state = 921225, min_dist = 0.5, spread = 1)
#sc.pl.umap(mdf, color = 'batch')
#mdf.write(output + '.h5ad')
fig, axs = plt.subplots(ncols = 2, figsize = (2*3*1.6,3))
udfs = pd.DataFrame(mdf.obsm['X_umap_standard'], columns = ['u1','u2'], index = mdf.obs.index)
udfm = pd.DataFrame(mdf.obsm['X_umap'], columns = ['u1','u2'], index = mdf.obs.index)
for ax, udf, title in zip(axs, [udfs, udfm], ['standard','sequential']):
for t in sorted(set(mdf.obs['batch'])):
cells = mdf.obs[mdf.obs['batch']==t].index
ax.scatter(udf.loc[cells,'u1'], udf.loc[cells,'u2'], s = 0.8, label = t, rasterized = True, alpha = 0.8)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.set_xticks([]); ax.set_yticks([])
ax.set_title(title)
lgn = axs[-1].legend(loc = 2, bbox_to_anchor = (1,1))
for handle in lgn.legendHandles:
handle.set_sizes([12.0])
fig.savefig(outdir + '/' + output + '_umap_comparisons.pdf', bbox_inches = 'tight')
mdf.write(outdir + '/' + output + '_umap_comparisons.h5ad')
sys.exit()