Skip to content

Latest commit

 

History

History
17 lines (14 loc) · 816 Bytes

README.md

File metadata and controls

17 lines (14 loc) · 816 Bytes

Filter-Level Pruning

Weight Rank Pruning

L1 norm

Take the sensitivity(std(weight) * s) as threshold and prune the filters with small L1-norm.

Test on cifar10_resnet56_v1 model(top1-acc=93.6%).

  • Increasing s, without regularization
    Prune at step=[0, 1200, 2400, 3600, 4800, 6000, 7200] with s=[.4, .45, .5, .55, .6, .65, .7].
    prune_std
    (top1-acc=86.32%, pruned_MAC=45.47%, pruned_params=46.63%)
  • Fixed s, with regularization
    Prune at step=[0, 1200, 2400, 3600, 4800, 6000, 7200] with fixed s=.4.
    But introduce group-lasso(regularization = (weight ** 2).sum(axis=(1, 2, 3)).sqrt()) to loss function. prune_reg
    (top1-acc=88.54%, pruned_MAC=41.26%, pruned_params=48.24%)