-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsummarize_pubmed.py
491 lines (391 loc) · 18.4 KB
/
summarize_pubmed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
from Utilities import count_number
from Utilities import split_value_by_comma
from Utilities import median_year
from Utilities import int_sorter
from Utilities import create_binnned_year, format_counts_and_percentages
import numpy as np
import pandas as pd
from collections import defaultdict
from Utilities import load_csv
from Utilities import dump_csv
def summarize_pubmed(pubmed_file, virus_obj):
if not pubmed_file.exists():
print('Pubmed file not found')
return pd.DataFrame()
pubmed = pd.read_excel(pubmed_file, dtype=str).fillna('')
pubmed['ref_source'] = 'PubMed search'
summarize_pubmed_reviewer_gpt(pubmed, virus_obj.get_logger('pubmed_workflow'))
likely = pubmed[
(
(pubmed['Reviewer1 (Y/N)'].str.lower().isin(('likely', 'unsure')))
|
(pubmed['GPT (Y/N)'].str.lower().isin(('likely', 'unsure')))
) &
(pubmed['Resolve Seq'].str.lower() != 'no') &
(
(pubmed['Reviewer(s) Seq'].str.lower() == 'yes') |
(pubmed['GPT seq (Y/N)'].str.lower() == 'yes')
)
]
both_unlikely = pubmed[
(
(pubmed['Reviewer1 (Y/N)'].str.lower() == 'unlikely') &
(pubmed['GPT (Y/N)'].str.lower() == 'unlikely')
)
]
pubmed = pd.concat([likely, both_unlikely])
logger = virus_obj.get_logger('pubmed_workflow')
logger.info('Pubmed Literatures:', len(pubmed))
logger.info('Pubmed Literatures, likely:', len(likely))
logger.info('Pubmed Literatures, both unlikely:', len(both_unlikely))
pubmed = virus_obj.process_pubmed(pubmed)
virus_obj.get_logger('pubmed').report(summarize_pubmed_data(pubmed))
if virus_obj.pubmed_additional_from_gb:
additional_pubmed = pd.read_excel(
virus_obj.pubmed_additional_from_gb, dtype=str).fillna('')
additional_pubmed['ref_source'] = 'GB reference'
additional_pubmed = virus_obj.process_pubmed(additional_pubmed)
logger.info(
'Only from GenBank Search:',
len(additional_pubmed))
pubmed = pd.concat([pubmed, additional_pubmed], ignore_index=True)
logger.info(
'Pubmed Literature with additional Literature from GenBank Only:',
len(pubmed))
if virus_obj.pubmed_search_missing:
pubmed_missing = pd.read_excel(
virus_obj.pubmed_search_missing, dtype=str).fillna('')
pubmed_missing['ref_source'] = 'Not found in PubMed or GenBank Search'
pubmed_missing = virus_obj.process_pubmed(pubmed_missing)
logger.info(
'Not found in PubMed or GenBank Search:',
len(pubmed_missing))
pubmed = pd.concat([pubmed, pubmed_missing], ignore_index=True)
# IF inlude additional PMID from GenBank
# if summrize:
# summarize_pubmed_data(pubmed, virus_obj.get_logger('pubmed_from_GB'))
# pubmed['PubID'] = pubmed.index + 1
get_fixed_Pub_ID(virus_obj, pubmed)
pubmed.to_excel(virus_obj.pubmed_with_index, index=False)
return pubmed
def recursive_defaultdict():
return defaultdict(recursive_defaultdict)
def summarize_pubmed_reviewer_gpt(df, logger):
summary = recursive_defaultdict()
summary['Title/Abstract:']['df'] = df
summary['Title/Abstract:']['R1 likely']['df'] = df[
(df['Reviewer1 (Y/N)'].str.lower().isin(('likely', 'unsure')))
]
summary['Title/Abstract:']['R1 unlikely']['df'] = df[
(df['Reviewer1 (Y/N)'].str.lower() == 'unlikely')
]
summary['Title/Abstract:']['GPT likely']['df'] = df[
(df['GPT (Y/N)'].str.lower().isin(('likely', 'unsure')))
]
summary['Title/Abstract:']['GPT unlikely']['df'] = df[
(df['GPT (Y/N)'].str.lower() == 'unlikely')]
summary['Title/Abstract:']['R1 likely']['GPT likely']['df'] = df[
(df['Reviewer1 (Y/N)'].str.lower().isin(('likely', 'unsure'))) &
(df['GPT (Y/N)'].str.lower().isin(('likely', 'unsure')))
]
summarize_pubmed_reviewer_gpt_to_full_text(
summary['Title/Abstract:']['R1 likely']['GPT likely'])
summarize_pubmed_reviewer_gpt_to_full_text(
summary['Title/Abstract:']['GPT likely'])
summary['Title/Abstract:']['R1 likely']['GPT unlikely']['df'] = df[
(df['Reviewer1 (Y/N)'].str.lower().isin(('likely', 'unsure'))) &
(df['GPT (Y/N)'].str.lower() == 'unlikely')
]
summary['Title/Abstract:']['R1 likely']['GPT unlikely'][
'R2 likely']['df'] = df[
(df['Reviewer1 (Y/N)'].str.lower().isin(('likely', 'unsure'))) &
(df['GPT (Y/N)'].str.lower() == 'unlikely') &
(df['Resolve Title'].str.lower().isin(('likely', 'unsure')))
]
summarize_pubmed_reviewer_gpt_to_full_text(
summary['Title/Abstract:']['R1 likely']['GPT unlikely'][
'R2 likely'])
summary['Title/Abstract:']['R1 likely']['GPT unlikely'][
'R2 unlikely']['df'] = df[
(df['Reviewer1 (Y/N)'].str.lower().isin(('likely', 'unsure'))) &
(df['GPT (Y/N)'].str.lower() == 'unlikely') &
(df['Resolve Title'].str.lower().isin(('unlikely', '')))
]
summarize_pubmed_reviewer_gpt_to_full_text(
summary['Title/Abstract:']['R1 likely']['GPT unlikely'][
'R2 unlikely'])
summary['Title/Abstract:']['R1 unlikely']['GPT likely']['df'] = df[
(df['Reviewer1 (Y/N)'].str.lower() == 'unlikely') &
(df['GPT (Y/N)'].str.lower().isin(('likely', 'unsure')))
]
summary['Title/Abstract:']['R1 unlikely']['GPT likely'][
'R2 likely']['df'] = df[
(df['Reviewer1 (Y/N)'].str.lower() == 'unlikely') &
(df['GPT (Y/N)'].str.lower().isin(('likely', 'unsure'))) &
(df['Resolve Title'].str.lower().isin(('likely', 'unsure')))
]
summarize_pubmed_reviewer_gpt_to_full_text(
summary['Title/Abstract:']['R1 unlikely']['GPT likely'][
'R2 likely'])
summary['Title/Abstract:']['R1 unlikely']['GPT likely'][
'R2 unlikely']['df'] = df[
(df['Reviewer1 (Y/N)'].str.lower() == 'unlikely') &
(df['GPT (Y/N)'].str.lower().isin(('likely', 'unsure'))) &
(df['Resolve Title'].str.lower().isin(('unlikely', '')))
]
summarize_pubmed_reviewer_gpt_to_full_text(
summary['Title/Abstract:']['R1 unlikely']['GPT likely'][
'R2 unlikely'])
summary['Title/Abstract:']['R1 unlikely']['GPT unlikely']['df'] = df[
(df['Reviewer1 (Y/N)'].str.lower() == 'unlikely') &
(df['GPT (Y/N)'].str.lower() == 'unlikely')
]
summarize_pubmed_reviewer_gpt_to_full_text(
summary['Title/Abstract:']['R1 unlikely']['GPT unlikely'])
calc_GPT_title_abstract_accuracy(summary)
calc_R1_title_abstract_accuracy(summary)
basic_summary(logger, summary)
logger.info('=' * 80)
summary = recursive_defaultdict()
summary['df'] = df[
(df['Reviewer1 (Y/N)'].str.lower().isin(('likely', 'unsure'))) |
(df['GPT (Y/N)'].str.lower().isin(('likely', 'unsure')))
]
summarize_pubmed_reviewer_gpt_to_full_text(summary)
calc_GPT_full_text_accuracy(summary)
calc_R1_full_text_accuracy(summary)
basic_summary(logger, summary)
logger.info('=' * 80)
def calc_GPT_title_abstract_accuracy(summary):
true_pos = summary['Title/Abstract:']['GPT']['true pos'] = (
len(summary['Title/Abstract:']['R1 likely']['GPT likely']['df']) +
len(summary['Title/Abstract:']['R1 unlikely']['GPT likely']['R2 likely']['df'])
)
false_neg = summary['Title/Abstract:']['GPT']['false neg'] = (
len(summary['Title/Abstract:']['R1 likely']['GPT unlikely']['R2 likely']['df'])
# + summary['Title/Abstract:']['R1 unlikely']['GPT unlikely']['R2 likely']
)
false_pos = summary['Title/Abstract:']['GPT']['false pos'] = (
len(summary['Title/Abstract:']['R1 unlikely']['GPT likely']['R2 unlikely']['df'])
# summary['Title/Abstract:']['R1 likely']['GPT likely']['R2 unlikely']
)
summary['Title/Abstract:']['GPT']['precision'] = 100 * true_pos / (true_pos + false_pos)
summary['Title/Abstract:']['GPT']['recall'] = 100 * true_pos / (true_pos + false_neg)
def calc_R1_title_abstract_accuracy(summary):
true_pos = summary['Title/Abstract:']['R1']['true pos'] = (
len(summary['Title/Abstract:']['R1 likely']['GPT likely']['df']) +
len(summary['Title/Abstract:']['R1 likely']['GPT unlikely']['R2 likely']['df'])
)
false_neg = summary['Title/Abstract:']['R1']['false neg'] = (
len(summary['Title/Abstract:']['R1 unlikely']['GPT likely']['R2 likely']['df'])
)
false_pos = summary['Title/Abstract:']['R1']['false pos'] = (
len(summary['Title/Abstract:']['R1 likely']['GPT unlikely']['R2 unlikely']['df'])
# summary['Title/Abstract:']['R1 likely']['GPT likely']['R2 unlikely']
)
summary['Title/Abstract:']['R1']['precision'] = 100 * true_pos / (true_pos + false_pos)
summary['Title/Abstract:']['R1']['recall'] = 100 * true_pos / (true_pos + false_neg)
def calc_GPT_full_text_accuracy(summary):
true_pos = summary['Full text with seq:']['GPT']['true pos'] = (
len(summary['Full text with seq:']['R1 yes']['GPT yes']['df']) +
len(summary['Full text with seq:']['R1 no']['GPT yes']['R2 yes']['df'])
)
false_neg = summary['Full text with seq:']['GPT']['false neg'] = (
len(summary['Full text with seq:']['R1 yes']['GPT no']['R2 yes']['df'])
)
false_pos = summary['Full text with seq:']['GPT']['false pos'] = (
len(summary['Full text with seq:']['R1 no']['GPT yes']['R2 no']['df'])
)
summary['Full text with seq:']['GPT']['precision'] = 100 * true_pos / (true_pos + false_pos)
summary['Full text with seq:']['GPT']['recall'] = 100 * true_pos / (true_pos + false_neg)
def calc_R1_full_text_accuracy(summary):
true_pos = summary['Full text with seq:']['R1']['true pos'] = (
len(summary['Full text with seq:']['R1 yes']['GPT yes']['df']) +
len(summary['Full text with seq:']['R1 yes']['GPT no']['R2 yes']['df'])
)
false_neg = summary['Full text with seq:']['R1']['false neg'] = (
len(summary['Full text with seq:']['R1 no']['GPT yes']['R2 yes']['df'])
)
false_pos = summary['Full text with seq:']['R1']['false pos'] = (
len(summary['Full text with seq:']['R1 yes']['GPT no']['R2 no']['df'])
)
summary['Full text with seq:']['R1']['precision'] = 100 * true_pos / (true_pos + false_pos)
summary['Full text with seq:']['R1']['recall'] = 100 * true_pos / (true_pos + false_neg)
def summarize_pubmed_reviewer_gpt_to_full_text(summary):
df = summary['df']
summary['Full text with seq:']['R1 yes']['df'] = df[
(df['Reviewer(s) Seq'].str.lower() == 'yes')
]
summary['Full text with seq:']['R1 yes']['GPT yes']['df'] = df[
(df['Reviewer(s) Seq'].str.lower() == 'yes') &
(df['GPT seq (Y/N)'].str.lower() == 'yes')
]
summary['Full text with seq:']['R1 yes']['GPT no']['df'] = df[
(df['Reviewer(s) Seq'].str.lower() == 'yes') &
(df['GPT seq (Y/N)'].str.lower() == 'no')
]
summary['Full text with seq:']['R1 yes']['GPT no'][
'R2 yes']['df'] = df[
(df['Reviewer(s) Seq'].str.lower() == 'yes') &
(df['GPT seq (Y/N)'].str.lower() == 'no') &
(df['Resolve Seq'].str.lower() == 'yes')
]
summary['Full text with seq:']['R1 yes']['GPT no'][
'R2 no']['df'] = df[
(df['Reviewer(s) Seq'].str.lower() == 'yes') &
(df['GPT seq (Y/N)'].str.lower() == 'no') &
(df['Resolve Seq'].str.lower().isin(('no', '')))
]
summary['Full text with seq:']['R1 no']['df'] = df[
(df['Reviewer(s) Seq'].str.lower() == 'no')
]
summary['Full text with seq:']['R1 no']['GPT yes']['df'] = df[
(df['Reviewer(s) Seq'].str.lower() == 'no') &
(df['GPT seq (Y/N)'].str.lower() == 'yes')
]
summary['Full text with seq:']['R1 no']['GPT yes'][
'R2 yes']['df'] = df[
(df['Reviewer(s) Seq'].str.lower() == 'no') &
(df['GPT seq (Y/N)'].str.lower() == 'yes') &
(df['Resolve Seq'].str.lower() == 'yes')
]
summary['Full text with seq:']['R1 no']['GPT yes'][
'R2 no']['df'] = df[
(df['Reviewer(s) Seq'].str.lower() == 'no') &
(df['GPT seq (Y/N)'].str.lower() == 'yes') &
(df['Resolve Seq'].str.lower().isin(('no', '')))
]
summary['Full text with seq:']['R1 no']['GPT no']['df'] = df[
(df['Reviewer(s) Seq'].str.lower() == 'no') &
(df['GPT seq (Y/N)'].str.lower() == 'no')
]
def basic_summary(logger, summary, prefix=[]):
for k, v in summary.items():
if isinstance(v, pd.DataFrame):
logger.info(f"{' ' * 4 * len(prefix)}{len(v)}")
logger.info('-' * 80)
elif isinstance(v, int):
logger.info(f"{' ' * 4 * len(prefix)}{k}:{v}")
logger.info('-' * 80)
elif isinstance(v, float):
logger.info(f"{' ' * 4 * len(prefix)}{k}:{v}")
logger.info('-' * 80)
elif isinstance(v, str):
print(v)
else:
logger.info(f"{' ' * 4 * len(prefix)}{k}")
basic_summary(logger, v, prefix + [k])
def summarize_pubmed_data(df):
summarize_report = []
section = ["Summarize PubMed"]
summarize_report.append(section)
section = ['# Sequences']
section.append(sum([int(v['NumSeqs']) if v['NumSeqs'] else 0 for i, v in df.iterrows()]))
summarize_report.append(section)
section = ["Publish Year"]
year = count_number([v for i, v in df.iterrows()], 'Year', sorter=int_sorter)
publish_year = [
int(v['Year']) for i, v in df.iterrows()
if v['Year'] and v['Year'] != 'NA']
counts_formatted, percentages_formatted = format_counts_and_percentages(year)
section.append(f"Counts:\n{counts_formatted}\n")
section.append(f"Percentages:\n{percentages_formatted}\n")
section.append(
create_binnned_year(publish_year) if publish_year else ''
)
summarize_report.append(section)
# section = ['Journals']
# journals = count_number([v for i, v in df.iterrows()], 'Journal')
# section.append(journals)
# summarize_report.append(section)
# section = ["NumSeq By Journal"]
# num_seq = count_number([v for i, v in df.iterrows()], 'NumSeqs', sorter=int_sorter)
# section.append(num_seq)
# section.append('Total')
# section.append(sum([int(v['NumSeqs']) for i, v in df.iterrows() if v['NumSeqs']]))
# summarize_report.append(section)
section = ["Host"]
hosts = count_number([v for i, v in df.iterrows()], 'Host')
counts_formatted, percentages_formatted = format_counts_and_percentages(hosts)
section.append(f"Counts:\n{counts_formatted}\n")
section.append(f"Percentages:\n{percentages_formatted}\n")
summarize_report.append(section)
section = ["Specimen"]
specimen = count_number([v for i, v in df.iterrows()], 'Specimen')
counts_formatted, percentages_formatted = format_counts_and_percentages(specimen)
section.append(f"Counts:\n{counts_formatted}\n")
section.append(f"Percentages:\n{percentages_formatted}\n")
summarize_report.append(section)
section = ["Median of Sample Year"]
df.loc[:, 'MedianYear'] = df['SampleYr'].apply(median_year)
year = count_number([v for i, v in df.iterrows()], 'MedianYear', sorter=int_sorter)
counts_formatted, percentages_formatted = format_counts_and_percentages(year)
section.append(f"Counts:\n{counts_formatted}\n")
section.append(f"Percentages:\n{percentages_formatted}\n")
year = [int(v['MedianYear']) for i, v in df.iterrows() if v['MedianYear'] and v['MedianYear'] != 'NA']
if year:
section.append(('Median IQR', np.percentile(year, 25), np.percentile(year, 50), np.percentile(year, 75)))
section.append(create_binnned_year(year))
else:
section.append(('Median IQR', ))
section.append('')
summarize_report.append(section)
section = ["Country"]
# country_list = split_value_by_comma(df, 'Country')
country_list = []
for i, v in df.iterrows():
countries = v['Country'].split(',')
countries = [i.strip().capitalize() for i in countries]
countries = sorted(list(set(countries)))
country_list.append(', '.join(countries) if len(countries) < 4 else 'Multinational')
country = count_number(country_list)
counts_formatted, percentages_formatted = format_counts_and_percentages(country)
section.append(f"Counts:\n{counts_formatted}\n")
section.append(f"Percentages:\n{percentages_formatted}\n")
section.append(country)
summarize_report.append(section)
# section = ["Country W/WO"]
# country = count_number(
# [v for i, v in df.iterrows()], 'Country', translater=with_country)
# section.append(country)
# summarize_report.append(section)
section = ["Gene"]
gene_list = split_value_by_comma(df, 'Gene')
gene = count_number(gene_list)
counts_formatted, percentages_formatted = format_counts_and_percentages(gene)
section.append(f"Counts:\n{counts_formatted}\n")
section.append(f"Percentages:\n{percentages_formatted}\n")
summarize_report.append(section)
section = ["Seq method"]
methods = count_number([v for i, v in df.iterrows()], 'SeqMethod')
counts_formatted, percentages_formatted = format_counts_and_percentages(methods)
section.append(f"Counts:\n{counts_formatted}\n")
section.append(f"Percentages:\n{percentages_formatted}\n")
summarize_report.append(section)
section = ["End of Report"]
summarize_report.append(section)
return summarize_report
def get_fixed_Pub_ID(virus, references):
if virus.fixed_pub_id_file.exists():
fixed_ref = load_csv(virus.fixed_pub_id_file)
else:
fixed_ref = []
def find_fixed_ref_id(ref):
for prev_ref in fixed_ref:
if prev_ref['PMID'].strip() and ref['PMID'].strip() and prev_ref['PMID'].strip() == ref['PMID'].strip():
return int(prev_ref['PubID'])
return None
max_ref_id = max([int(r['PubID']) for r in fixed_ref]) if fixed_ref else 0
for idx, ref in references.iterrows():
fixed_ref_id = find_fixed_ref_id(ref)
if not fixed_ref_id:
max_ref_id += 1
fixed_ref_id = max_ref_id
fixed_ref.append({
'PubID': fixed_ref_id,
'PMID': ref['PMID'],
})
references.at[idx, 'PubID'] = fixed_ref_id
references["PubID"] = references["PubID"].astype(int)
dump_csv(virus.fixed_pub_id_file, fixed_ref)
return references