-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLDP.py
112 lines (76 loc) · 3.69 KB
/
LDP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import numpy as np
import math
from pure_ldp.frequency_oracles import *
def privatise_olh(epsilon, data, Y):
olh_estimates = [None]*len(data)
num_of_classes = len(Y.unique())
for i in range(len(data)):
d = len(np.unique(data[i]))
client_olh = LHClient(epsilon=epsilon, d=d, use_olh=True)
server_olh = LHServer(epsilon=epsilon, d=d, use_olh=True)
priv_olh_data = [client_olh.privatise(item) for item in data[i]]
server_olh.aggregate_all(priv_olh_data)
olh_estimates[i] = server_olh.estimate_all(range(1, d+1))
olh_estimates[i] = np.reshape(olh_estimates[i], (-1, num_of_classes))
return olh_estimates
def privatise_oue(epsilon, data, Y):
oue_estimates = [None]*len(data)
num_of_classes = len(Y.unique())
for i in range(len(data)):
d = len(np.unique(data[i]))
client_oue = UEClient(epsilon=epsilon, d=d, use_oue=True)
server_oue = UEServer(epsilon=epsilon, d=d, use_oue=True)
priv_oue_data = [client_oue.privatise(item) for item in data[i]]
server_oue.aggregate_all(priv_oue_data)
oue_estimates[i] = server_oue.estimate_all(range(1, d+1))
oue_estimates[i] = np.reshape(oue_estimates[i], (-1,num_of_classes))
return oue_estimates
def privatise_the(epsilon, data, Y):
the_estimates = [None]*len(data)
num_of_classes = len(Y.unique())
for i in range(len(data)):
d = len(np.unique(data[i]))
client_the = HEClient(epsilon=epsilon, d=d)
server_the = HEServer(epsilon=epsilon, d=d, use_the=True)
priv_the_data = [client_the.privatise(item) for item in data[i]]
server_the.aggregate_all(priv_the_data)
the_estimates[i] = server_the.estimate_all(range(1, d+1))
the_estimates[i] = np.reshape(the_estimates[i], (-1,num_of_classes))
return the_estimates
def privatise_hr(epsilon, data, Y):
hr_estimates = [None]*len(data)
num_of_classes = len(Y.unique())
for i in range(len(data)):
d = len(np.unique(data[i]))
server_hr = HadamardResponseServer(epsilon, d)
client_hr = HadamardResponseClient(epsilon, d, server_hr.get_hash_funcs())
priv_hr_data = [client_hr.privatise(item) for item in data[i]]
server_hr.aggregate_all(priv_hr_data)
hr_estimates[i] = server_hr.estimate_all(range(1, d+1))
hr_estimates[i] = np.reshape(hr_estimates[i], (-1,num_of_classes))
return hr_estimates
def privatise_cms(epsilon, k, m, data, Y):
cms_estimates = [None]*len(data)
num_of_classes = len(Y.unique())
for i in range(len(data)):
d = len(np.unique(data[i]))
server_cms = CMSServer(epsilon, k, m)
client_cms = CMSClient(epsilon, server_cms.get_hash_funcs(), m)
priv_cms_data = [client_cms.privatise(item) for item in data[i]]
server_cms.aggregate_all(priv_cms_data)
cms_estimates[i] = server_cms.estimate_all(range(1, d+1))
cms_estimates[i] = np.reshape(cms_estimates[i], (-1,num_of_classes))
return cms_estimates
def privatise_rappor(epsilon, k, m, data, Y):
f = round(1/(0.5*math.exp(epsilon/2)+0.5), 2)
rappor_estimates = [None]*len(data)
num_of_classes = len(Y.unique())
for i in range(len(data)):
d = len(np.unique(data[i]))
server_rappor = RAPPORServer(f, rappor_m, rappor_k, d)
client_rappor = RAPPORClient(f, rappor_m, server_rappor.get_hash_funcs())
priv_rappor_data = [client_rappor.privatise(item) for item in data[i]]
server_rappor.aggregate_all(priv_rappor_data)
rappor_estimates[i] = server_rappor.estimate_all(range(1, d+1))
rappor_estimates[i] = np.reshape(rappor_estimates[i], (-1,num_of_classes))
return rappor_estimates