-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMatrixLayerRotation.cpp
160 lines (122 loc) · 3.92 KB
/
MatrixLayerRotation.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#include <bits/stdc++.h>
using namespace std;
string ltrim(const string &);
string rtrim(const string &);
vector<string> split(const string &);
/*
* Complete the 'matrixRotation' function below.
*
* The function accepts following parameters:
* 1. 2D_INTEGER_ARRAY matrix
* 2. INTEGER r
*/
void matrixRotation(vector<vector<int>> matrix, int r) {
int m = matrix.size(); // Rows
int n = matrix[0].size(); // Columns
// Determine the number of layers to process
int num_layers = min(m, n) / 2;
// Create the rotated matrix to store the result
vector<vector<int>> result = matrix;
for (int layer = 0; layer < num_layers; layer++) {
// Extract the current layer into a 1D array
vector<int> elements;
// Top row
for (int j = layer; j < n - layer; j++) {
elements.push_back(matrix[layer][j]);
}
// Right column
for (int i = layer + 1; i < m - layer; i++) {
elements.push_back(matrix[i][n - layer - 1]);
}
// Bottom row (reversed)
for (int j = n - layer - 2; j >= layer; j--) {
elements.push_back(matrix[m - layer - 1][j]);
}
// Left column (reversed)
for (int i = m - layer - 2; i > layer; i--) {
elements.push_back(matrix[i][layer]);
}
// Perform the rotation
int layer_size = elements.size();
int r_eff = r % layer_size; // Effective rotations
// Create a rotated 1D array
vector<int> rotated_layer(layer_size);
for (int i = 0; i < layer_size; i++) {
rotated_layer[i] = elements[(i + r_eff) % layer_size];
}
// Place rotated elements back into the correct positions
int idx = 0;
// Top row
for (int j = layer; j < n - layer; j++) {
result[layer][j] = rotated_layer[idx++];
}
// Right column
for (int i = layer + 1; i < m - layer; i++) {
result[i][n - layer - 1] = rotated_layer[idx++];
}
// Bottom row
for (int j = n - layer - 2; j >= layer; j--) {
result[m - layer - 1][j] = rotated_layer[idx++];
}
// Left column
for (int i = m - layer - 2; i > layer; i--) {
result[i][layer] = rotated_layer[idx++];
}
}
// Print the resulting matrix
for (auto row : result) {
for (int val : row) {
cout << val << " ";
}
cout << endl;
}
}
int main()
{
string first_multiple_input_temp;
getline(cin, first_multiple_input_temp);
vector<string> first_multiple_input = split(rtrim(first_multiple_input_temp));
int m = stoi(first_multiple_input[0]);
int n = stoi(first_multiple_input[1]);
int r = stoi(first_multiple_input[2]);
vector<vector<int>> matrix(m);
for (int i = 0; i < m; i++) {
matrix[i].resize(n);
string matrix_row_temp_temp;
getline(cin, matrix_row_temp_temp);
vector<string> matrix_row_temp = split(rtrim(matrix_row_temp_temp));
for (int j = 0; j < n; j++) {
int matrix_row_item = stoi(matrix_row_temp[j]);
matrix[i][j] = matrix_row_item;
}
}
matrixRotation(matrix, r);
return 0;
}
string ltrim(const string &str) {
string s(str);
s.erase(
s.begin(),
find_if(s.begin(), s.end(), not1(ptr_fun<int, int>(isspace)))
);
return s;
}
string rtrim(const string &str) {
string s(str);
s.erase(
find_if(s.rbegin(), s.rend(), not1(ptr_fun<int, int>(isspace))).base(),
s.end()
);
return s;
}
vector<string> split(const string &str) {
vector<string> tokens;
string::size_type start = 0;
string::size_type end = 0;
while ((end = str.find(" ", start)) != string::npos) {
tokens.push_back(str.substr(start, end - start));
start = end + 1;
}
tokens.push_back(str.substr(start));
return tokens;
}