-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhuffman.go
153 lines (139 loc) · 3.12 KB
/
huffman.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
// Copyright 2024 Hao Zhang
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package compress
import (
"strconv"
"github.com/howz97/algorithm/pqueue"
"github.com/howz97/algorithm/search"
)
type node struct {
isLeaf bool
b byte
cnt int
left, right *node
}
func (n *node) IsNil() bool {
return n == nil
}
func (n *node) String() string {
str := ""
if n.isLeaf {
str = "(" + string([]byte{n.b}) + ")"
}
return str + strconv.Itoa(n.cnt)
}
func (n *node) Left() search.BNode {
return n.left
}
func (n *node) Right() search.BNode {
return n.right
}
func (n *node) makeTable(code []bool, table [][]bool) {
if n.isLeaf {
table[n.b] = make([]bool, len(code))
copy(table[n.b], code)
return
}
n.left.makeTable(append(code, false), table)
n.right.makeTable(append(code, true), table)
}
func newNode(br *bitReader) (n *node) {
n = &node{}
if br.ReadBit() {
n.isLeaf = true
n.b = byte(br.ReadBits(8))
} else {
// non-leaf node MUST have two kids in a huffman tree
n.left = newNode(br)
n.right = newNode(br)
}
return
}
// HuffmanCompress data using huffman algorithm
func HuffmanCompress(data []byte) []byte {
bw, table := compile(data)
bw.WriteUint32(uint32(len(data)))
for _, b := range data {
bw.WriteBits(table[b])
}
bw.Flush()
return bw.output
}
func compile(data []byte) (*bitWriter, [256][]bool) {
bw := new(bitWriter)
huffmanTree := genHuffmanTree(data)
var table [256][]bool
huffmanTree.makeTable(make([]bool, 0, 256), table[:])
// Encode huffman tree
search.PreorderRecur(huffmanTree, func(n *node) bool {
if n.isLeaf {
bw.WriteBit(true)
bw.WriteByte(n.b)
} else {
bw.WriteBit(false)
}
return true
})
return bw, table
}
func genHuffmanTree(data []byte) (huffmanTree *node) {
var stat [256]int
for _, b := range data {
stat[b]++
}
pq := pqueue.NewPaired[int, *node](256)
for b, cnt := range stat {
if cnt > 0 {
pq.PushPair(cnt, &node{
isLeaf: true,
b: byte(b),
cnt: cnt,
})
}
}
for pq.Size() > 1 {
n1 := pq.Pop()
n2 := pq.Pop()
cnt := n1.cnt + n2.cnt
pq.PushPair(cnt, &node{
isLeaf: false,
cnt: cnt,
left: n1,
right: n2,
})
}
return pq.Pop()
}
// HuffmanDecompress data compressed by huffman algorithm
func HuffmanDecompress(data []byte) ([]byte, error) {
br := newBitReader(data)
huffmanTree := newNode(br)
size := br.ReadBits(32)
output := make([]byte, 0, size)
for len(output) < size {
nd := huffmanTree
for !nd.isLeaf {
if br.ReadBit() {
nd = nd.right
} else {
nd = nd.left
}
}
if br.Err() != nil {
break
}
output = append(output, nd.b)
}
return output, br.Err()
}