| 
 | 1 | +import os  | 
 | 2 | +from sklearn.metrics.pairwise import pairwise_distances_argmin  | 
 | 3 | + | 
 | 4 | +from chatterbot import ChatBot  | 
 | 5 | +from chatterbot.trainers import ChatterBotCorpusTrainer  | 
 | 6 | +from utils import *  | 
 | 7 | + | 
 | 8 | + | 
 | 9 | +class ThreadRanker(object):  | 
 | 10 | +    def __init__(self, paths):  | 
 | 11 | +        self.word_embeddings, self.embeddings_dim = load_embeddings(paths['WORD_EMBEDDINGS'])  | 
 | 12 | +        self.thread_embeddings_folder = paths['THREAD_EMBEDDINGS_FOLDER']  | 
 | 13 | + | 
 | 14 | +    def __load_embeddings_by_tag(self, tag_name):  | 
 | 15 | +        embeddings_path = os.path.join(self.thread_embeddings_folder, tag_name + ".pkl")  | 
 | 16 | +        thread_ids, thread_embeddings = unpickle_file(embeddings_path)  | 
 | 17 | +        return thread_ids, thread_embeddings  | 
 | 18 | + | 
 | 19 | +    def get_best_thread(self, question, tag_name):  | 
 | 20 | +        """ Returns id of the most similar thread for the question.  | 
 | 21 | +            The search is performed across the threads with a given tag.  | 
 | 22 | +        """  | 
 | 23 | +        thread_ids, thread_embeddings = self.__load_embeddings_by_tag(tag_name)  | 
 | 24 | + | 
 | 25 | +        # HINT: you have already implemented a similar routine in the 3rd assignment.  | 
 | 26 | +          | 
 | 27 | +        question_vec = #### YOUR CODE HERE ####  | 
 | 28 | +        best_thread = #### YOUR CODE HERE ####  | 
 | 29 | +          | 
 | 30 | +        return thread_ids[best_thread]  | 
 | 31 | + | 
 | 32 | + | 
 | 33 | +class DialogueManager(object):  | 
 | 34 | +    def __init__(self, paths):  | 
 | 35 | +        print("Loading resources...")  | 
 | 36 | + | 
 | 37 | +        # Intent recognition:  | 
 | 38 | +        self.intent_recognizer = unpickle_file(paths['INTENT_RECOGNIZER'])  | 
 | 39 | +        self.tfidf_vectorizer = unpickle_file(paths['TFIDF_VECTORIZER'])  | 
 | 40 | + | 
 | 41 | +        self.ANSWER_TEMPLATE = 'I think its about %s\nThis thread might help you: https://stackoverflow.com/questions/%s'  | 
 | 42 | + | 
 | 43 | +        # Goal-oriented part:  | 
 | 44 | +        self.tag_classifier = unpickle_file(paths['TAG_CLASSIFIER'])  | 
 | 45 | +        self.thread_ranker = ThreadRanker(paths)  | 
 | 46 | +        self.__init_chitchat_bot()  | 
 | 47 | + | 
 | 48 | +    def __init_chitchat_bot(self):  | 
 | 49 | +        """Initializes self.chitchat_bot with some conversational model."""  | 
 | 50 | + | 
 | 51 | +        # Hint: you might want to create and train chatterbot.ChatBot here.  | 
 | 52 | +        # Create an instance of the ChatBot class.  | 
 | 53 | +        # Create a trainer (chatterbot.trainers.ChatterBotCorpusTrainer) for the ChatBot.  | 
 | 54 | +        # Train the ChatBot with "chatterbot.corpus.english" param.  | 
 | 55 | +          | 
 | 56 | +        ########################  | 
 | 57 | +        #### YOUR CODE HERE ####  | 
 | 58 | +        ########################  | 
 | 59 | + | 
 | 60 | +        # remove this when you're done  | 
 | 61 | +        raise NotImplementedError(  | 
 | 62 | +            "Open dialogue_manager.py and fill with your code. In case of Google Colab, download"  | 
 | 63 | +            "(https://github.com/hse-aml/natural-language-processing/blob/master/project/dialogue_manager.py), "  | 
 | 64 | +            "edit locally and upload using '> arrow on the left edge' -> Files -> UPLOAD")  | 
 | 65 | +         | 
 | 66 | +    def generate_answer(self, question):  | 
 | 67 | +        """Combines stackoverflow and chitchat parts using intent recognition."""  | 
 | 68 | + | 
 | 69 | +        # Recognize intent of the question using `intent_recognizer`.  | 
 | 70 | +        # Don't forget to prepare question and calculate features for the question.  | 
 | 71 | +          | 
 | 72 | +        prepared_question = #### YOUR CODE HERE ####  | 
 | 73 | +        features = #### YOUR CODE HERE ####  | 
 | 74 | +        intent = #### YOUR CODE HERE ####  | 
 | 75 | + | 
 | 76 | +        # Chit-chat part:     | 
 | 77 | +        if intent == 'dialogue':  | 
 | 78 | +            # Pass question to chitchat_bot to generate a response.         | 
 | 79 | +            response = #### YOUR CODE HERE ####  | 
 | 80 | +            return response  | 
 | 81 | +          | 
 | 82 | +        # Goal-oriented part:  | 
 | 83 | +        else:          | 
 | 84 | +            # Pass features to tag_classifier to get predictions.  | 
 | 85 | +            tag = #### YOUR CODE HERE ####  | 
 | 86 | +              | 
 | 87 | +            # Pass prepared_question to thread_ranker to get predictions.  | 
 | 88 | +            thread_id = #### YOUR CODE HERE ####  | 
 | 89 | +              | 
 | 90 | +            return self.ANSWER_TEMPLATE % (tag, thread_id)  | 
0 commit comments