-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchap6.tex
1622 lines (1569 loc) · 86.8 KB
/
chap6.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{Elliptic equation}
In this chapter, we will discuss on the general elliptic PDEs and its weak form. We will exploit two essentially distinct techniques, energy methods within Sobolev spaces and maximum principle methods.
\section{Definition}
\subsection{Elliptic equations}
We will in this chapter mostly study the boundary value problem(BVP):
\begin{equation}
\label{eq:Elliptic_eq}
\left\{
\begin{aligned}
Lu&=f\text{ in }U;\\
u&=0\text{ on }\partial U,\\
\end{aligned}
\right.
\end{equation}
where $U$ is an open, bounded subset of $\mathbb{R}^{n}$, and $u:\bar{U}\rightarrow\mathbb{R}$ is the unknown. Here $f$ is given, and $L$ denotes a second order differential operator have either the form:
\begin{equation}
\label{eq:div-form_ellip}
Lu=-\sum_{i,j=1}^{n}\left(a^{ij}(x)u_{x_{i}}\right)_{x_{j}}+\sum_{i=1}^{n}b^{i}(x)u_{x_{i}}+c(x)u
\end{equation}
or else
\begin{equation}
\label{eq:non_div-form_ellip}
Lu=-\sum_{i,j=1}^{n}a^{ij}(x)u_{x_{i}x_{j}}+\sum_{i=1}^{n}b^{i}(x)u_{x_{i}}+c(x)u.
\end{equation}
The form \eqref{eq:div-form_ellip} is in \textbf{divergence form}, while the form \eqref{eq:non_div-form_ellip} is in \textbf{non-divergence form}. The requirement that $u=0$ on $\partial\Omega$ is called \textbf{Dirichlet's boundary condition}.
\begin{remark}
\begin{itemize}
\item Different with Evans chapter 2, $u\in C^{2}(U)$ is unnecessary. So we should discuss on the weak form of equation \eqref{eq:Elliptic_eq}.
\item If $a^{ij}\in C^{2}(U)$, the form \eqref{eq:div-form_ellip} and \eqref{eq:non_div-form_ellip} are equivalent in general. But the form \eqref{eq:div-form_ellip} is more natural for energy methods, and the form \eqref{eq:non_div-form_ellip} is more appropriate for maximum principle techniques.
\item Assumption: \textbf{symmetry condition}
\begin{equation*}
\label{eq:symmetry_cond}
a^{ij}=a^{ji}.
\end{equation*}
\end{itemize}
\end{remark}
Now, give an important property of the differential operator $L$.
\begin{definition}
\label{defn:uniformly_elliptic}
We say the partial differential operator $L$ is (uniformly) elliptic if there exists a constant $\theta>0$ such that
\begin{equation}
\sum_{i,j=1}^{n}a^{ij}(x)\xi_{i}\xi_{j}\ge\theta |\xi|^{2}
\end{equation}
for a.e. $x\in U$ and all $\xi\in\mathbb{R}^{n}$.
\end{definition}
\begin{remark}
\begin{itemize}
\item $L$ is uniformly elliptic means the matrix $(a^{ij}(x))$ is positive definite for a.e. $x\in U$.
\item The converse proposition of the above proposition isn't true.
\item Special case: $a^{ij}(x)\equiv\delta_{ij}, b^{i}\equiv 0, c^{i}\equiv 0$. In this case, the equation \eqref{eq:Elliptic_eq} is the \textbf{Poisson equation}.
\end{itemize}
\end{remark}
\subsection{Weak solutions}
\textbf{Motivation:}In general case, we can only assume that
\begin{equation}
\label{eq:assumption_for_ellip}
a^{ij},b^{i},c\in L^{\infty}(U),f\in L^{2}(U).
\end{equation}
In this case, maybe we can't find $u\in C^{2}(U)$ such that $u$ satisfies \eqref{eq:Elliptic_eq}, so we try to derive the \textbf{weak form} of the solution $u$, such that $u\in H_{0}^{1}(U)$. In practise, choose \textbf{test function} $v\in C_{c}^{\infty}(U)$, then define the linear functional
\begin{equation}
\label{eq:functional_of_u}
u^{*}(v):=\int_{U}uv\dif x.
\end{equation}
Then consider the dual form of \eqref{eq:Elliptic_eq}, i.e.
\begin{equation}
\label{eq:dual_form}
(Lu)^{*}(v)=f^{*}(v)\text{ }\forall v\in C_{c}^{\infty}(U).
\end{equation}
It's just the \textbf{weak form} of equation \eqref{eq:Elliptic_eq}. In this section, we choose the \textbf{divergence form} of operator $L$.
\begin{theorem}
The weak form of equation \eqref{eq:Elliptic_eq} is
\begin{equation}
\label{eq:weak_form}
\int_{U}\sum_{i,j=1}^{n}a^{ij}u_{x_{i}}v_{x_{j}}+\sum_{i=1}^{n}b^{i}u_{x_{i}}v+cuv\dif x=\int_{U}fv\dif x.
\end{equation}
\end{theorem}
\begin{proof}
It's suffices to derive the expression of $\int_{U}vLu\dif x$. By Gauss-Green formula, for a vector field $F\in C^{1}(\mathbb{R}^{n})$, we can see:
\begin{equation}
\label{eq:Gauss-Green}
\int_{U}v\nabla\cdot F\dif x=\int_{\partial U}v F\cdot n\dif S(x)-\int_{U}F\cdot\nabla v\dif x.
\end{equation}
Choose the vector field $F=\begin{bmatrix}
\sum a^{i1}(x)u_{x_{i}}\\
\sum a^{i2}(x)u_{x_{i}}\\
\vdots\\
\sum a^{in}(x)u_{x_{i}}\\
\end{bmatrix}$, as $v=0$ on $\partial \Omega$, by \eqref{eq:Gauss-Green}, we can see:
\begin{equation}
\begin{aligned}
\int_{U}\sum_{i,j=1}^{n}\left(a^{ij}(x)u_{x_{i}}\right)_{x_{j}}v\dif x&=\int_{U}v\nabla\cdot F\dif x\\
&=-\int_{U}F\cdot\nabla v\dif x\\
&=-\int_{U}\sum_{i,j=1}^{n}a^{ij}u_{x_{i}}v_{x_{j}}\dif x.\\
\end{aligned}
\end{equation}
Then:
\begin{equation}
\label{eq:weak}
\int_{U}vLu\dif x=\int_{U}\sum_{i,j=1}^{n}a^{ij}u_{x_{i}}v_{x_{j}}+\sum_{i=1}^{n}b^{i}u_{x_{i}}v+cuv\dif x=\int_{U}vf\dif x=f^{*}(v).
\end{equation}
\end{proof}
By \eqref{eq:weak_form}, we can derive the following definitions.
\begin{definition}
\begin{enumerate}
\item The bilinear form $B[\;,\;]$ associated with the divergence form elliptic operator defined by \eqref{eq:div-form_ellip} is:
\begin{equation}
\label{eq:bilinear_form_B1}
B[u,v]:=\int_{U}\sum_{i,j=1}^{n}a^{ij}u_{x_{i}}v_{x_{j}}+\sum_{i=1}^{n}b^{i}u_{x_{i}}v
\end{equation}
for $u,v\in H_{0}^{1}(U)$.
\item We say that $u\in H_{0}^{1}(U)$ is a weak solution of the BVP \eqref{eq:Elliptic_eq} if
\begin{equation}
B[u,v]=(f,v)
\end{equation}
for all $v\in H_{0}^{1}(U)$, where $(\;,\;)$ denotes the inner product in $L^{2}(U)$.
\end{enumerate}
\end{definition}
More generally, let us consider the BVP
\begin{equation}
\label{eq:revised_BVP}
\left\{
\begin{aligned}
Lu&=f^{0}-\sum_{i=1}^{n}f_{x_{i}}^{i},x\in U,\\
u&=0,x\in\partial U,
\end{aligned}
\right.
\end{equation}
where $f^{i}\in L^{2}(U)$. Then we say $u\in H_{0}^{1}(U)$ is a weak solution of problem \eqref{eq:revised_BVP} if
\begin{equation}
B[u,v]=\innerprod{f}{v}
\end{equation}
for all $v\in H_{0}^{1}(U)$, where $\innerprod{\cdot}{\cdot}$ is the pairing of $H^{-1}(U)$ and $H_{0}^{1}(U)$.
For non-homogeneous elliptic PDE, i.e.
\begin{equation}
\label{eq:nonhomo}
\left\{
\begin{aligned}
Lu&=f,x\in U,\\
u&=g,x\in \partial U.\\
\end{aligned}
\right.
\end{equation}
By trace theorem, $\exists w\in H^{1}(U)$ such that the trace of $w$ is $g$. Then define $\tilde{u}:=u-w$, \eqref{eq:nonhomo} is equivalent to the equation:
\begin{equation}
\label{eq:change_to_homogeneous}
\left\{
\begin{aligned}
L\tilde{u}&=\tilde{f},x\in U,\\
\tilde{u}&=0,x\in\partial U,\\
\end{aligned}
\right.
\end{equation}
where $\tilde{f}:=f-Lw\in H^{-1}(U)$.
\section{Existence of weak solutions}
\subsection{Lax-Milgram theorem}
We now introduce an abstract principle from linear functional analysis.
Assume $H$ is a real Hilbert space, with norm $\|\;\|$ and inner product $(\;,\;)$. We let $\innerprod{\cdot}{\cdot}$ denote the pairing of $H$ with its dual space.
\begin{theorem}{Lax-Milgram Theorem}
\label{thm:Lax-Milgram}
Assume that
\begin{equation}
\label{eq:bilinear_form_B}
B:H\times H\rightarrow\mathbb{R}
\end{equation}
is a bilinear mapping, for which there exist constants $\alpha,\beta$ such that
\begin{equation}
\label{eq:bounded}
|B(u,v)|\le \alpha \norm{u}\norm{v}(u,v\in H)
\end{equation}
and
\begin{equation}
\label{eq:elliptic}
\beta\norm{u}^{2}\le B[u,u](u\in H).
\end{equation}
Finally, let $f:H\rightarrow R$ be a bounded linear functional on $H$.
Then there exists a unique element $u\in H$ such that
\begin{equation}
\label{eq:Lax-Milgram}
B[u,v]=\innerprod{f}{v}
\end{equation}
for all $v\in H$.
\end{theorem}
\begin{remark}
\begin{enumerate}
\item If $B$ is symmetry, the condition \eqref{eq:bounded} and \eqref{eq:elliptic} means $B$ can derive an inner product on $H$.
\item So, if $B$ is symmetry, theorem \ref{thm:Lax-Milgram} is a direct corollary of Riesz representation theorem.
\item If $B$ isn't symmetry, Riesz representation theorem can transform $f\in H^{*}$ to $u_{f}\in H$, such that $\innerprod{f}{v}=(u_{f},v)$.
\item So, we should show that $\forall u_{f}\in H$, $\exists u\in H$ such that $B[u,v]=(u_{f},v)$ for each $v\in H$.
\end{enumerate}
\end{remark}
\begin{proof}
By the remark above, we just need to show that $\forall u_{f}\in H$, $\exists u\in H$ such that $B[u,v]=(u_{f},v)$ for each $v\in H$.
Consider an element $u\in H$. $B(u,v)$ is a bounded bilinear mapping, so the map
\begin{equation}
\label{eq:Bu}
B_{u}(v):=B[u,v]
\end{equation}
is a bounded linear functional. By Riesz representation theorem, $\exists !\tilde{u}\in H$ such that $B[u,v]=(\tilde{u},v)$ $\forall v\in H$. So we can define a map $A:H\rightarrow H$ maps $u$ to $\tilde{u}$.
Then it's suffices to show that $A$ is a bounded linear isomorphism.
First we should show that $A$ is linear. $\forall v\in H$, $\lambda_{1},\lambda_{2}\in\mathbb{R}$, $u_{1},u_{2}\in H$, we can see:
\begin{equation}
\label{eq:linear_A}
\begin{aligned}
(A(\lambda_{1}u_{1}+\lambda_{2}u_{2}),v)&=B[\lambda_{1}u_{1}+\lambda_{2}u_{2},v]\\
&=\lambda_{1}B[u_{1},v]+\lambda_{2}B[u_{2},v]\\
&=\lambda_{1}(Au_{1},v)+\lambda_{2}(Au_{2},v).
\end{aligned}
\end{equation}
\eqref{eq:linear_A} shows that $A$ is a linear map.
Then we show that $A$ is bounded. As $B$ is bounded, we can see:
\begin{equation}
\label{eq:Bounded_A}
\begin{aligned}
\norm{Au}^{2}&=(Au,Au)\\
&=B[u,Au]\\
&\le \alpha \norm{u}\norm{Au}.
\end{aligned}
\end{equation}
i.e. $\norm{Au}\le\alpha\norm{u}$. So $A$ is bounded.
The next thing to do in the proof is to show $A$ is an injective. By \eqref{eq:elliptic}, we can see:
\begin{equation}
\label{eq:injective_A}
\begin{aligned}
\beta\norm{u}^{2}&\le B[u,u]\\
&=(Au,u)\\
&\le \norm{Au}\norm{u}.
\end{aligned}
\end{equation}
i.e. $\beta\norm{u}\le\norm{Au}$. So $\beta\norm{u}\le \norm{Au}\le\alpha\norm{u}$, it means that $A$ is an injective. What's more, the range of $A$, marked as $R(A)$, is a closed set.
Finally, we should show that $A$ is a surjective. If $R(A)\neq H$, since $R(A)$ is closed, there exists a nonzero element $\omega\in H$ with $\omega\in R(A)^{\bot}$. Then:
\begin{equation}
\beta\norm{\omega}^{2}\le B[\omega,\omega]=(A\omega,\omega)=0.
\end{equation}
which means that $\norm{\omega}=0$, contradict! So $A$ is a surjective.
This completes the proof of Lax-Milgram theorem.
\end{proof}
Lax-Milgram theorem gives an important method for us to analyze the existence of weak solution.
\subsection{Energy estimates and First Existence theorem}
Now, we return to the specific bilinear form $B[\;,\;]$ defined by \eqref{eq:bilinear_form_B1}, and try to use \textbf{Lax-Milgram theorem} to prove the first existence theorem.
\begin{theorem}{Energy estimates}
\label{thm:energy_estimate}
There exists constants $\alpha,\beta>0$ and $\gamma\ge 0$ such that
\begin{equation}
\label{eq:bounded_B}
|B[u,v]|\le\alpha\norm{u}_{H_{0}^{1}(U)}\norm{v}_{H_{0}^{1}(U)}
\end{equation}
and
\begin{equation}
\label{eq:elliptic_B}
\beta\norm{u}_{H_{0}^{1}(U)}^{2}\le B[u,u]+\gamma\norm{u}_{L^{2}(U)}^{2}.
\end{equation}
\end{theorem}
\begin{proof}
First derive the inequality \eqref{eq:bounded_B}. According to \eqref{eq:bilinear_form_B1}, we can check that
\begin{equation}
\label{eq:derive_energy_B}
\begin{aligned}
B[u,v]&\le\sum_{i,j=1}^{n}\int_{U}\norm{a^{ij}}_{L^{\infty}}|u_{x_{i}}||v_{x_{j}}|\dif x+\sum_{i=1}^{n}\int_{U}\norm{b^{i}}_{L^{\infty}}|u_{x_{i}}||v|\dif x+\int_{U}\norm{c}_{L^{\infty}}|u||v|\dif x\\
&\le\sum_{i,j=1}^{n}\int_{U}\norm{a^{ij}}_{L^{\infty}}|Du||Dv|\dif x+\sum_{i=1}^{n}\int_{U}\norm{b^{i}}_{L^{\infty}}|Du||v|\dif x+\int_{U}\norm{c}_{L^{\infty}}|u||v|\dif x\\
&\le\alpha\norm{u}_{H_{0}^{1}(U)}\norm{v}_{H_{0}^{1}(U)}.
\end{aligned}
\end{equation}
Then, by the uniformly elliptic condition of coefficient matrix $a^{ij}(x)$, we can see:
\begin{equation}
\label{eq:elliptic_for_a}
\begin{aligned}
\theta\int_{U}|Du|^{2}\dif x&\le \int_{U}\sum_{i,j=1}^{n}a^{ij}(x)u_{x_{i}}u_{x_{j}}\dif x\\
&=B[u,u]-\int_{U}\left(\sum_{i=1}^{n}b^{i}(x)u_{x_{i}}u\dif x+cu^{2}\right)\dif x\\
&\le B[u,u]+\sum_{i=1}^{n}\int_{U}\norm{b^{i}(x)}_{\Linf}|u||Du|\dif x+c\int_{U}u^{2}\dif x\\
\end{aligned}
\end{equation}
By Cauchy-Schwarz inequality with coefficient, we can see:
\begin{equation}
\label{eq:cauchy_schwarz}
\int_{U}|u||Du|\dif x\le\epsilon\int_{U}|Du|^{2}\dif x+\frac{1}{4\epsilon}\int_{U}|u|^{2}\dif x.
\end{equation}
Choose $\epsilon$ such that $\epsilon\sum_{i=1}^{n}\norm{b^{i}}_{L^{\infty}}<\frac{\theta}{2}$, then exists constant $C>0$ such that
\begin{equation}
\label{eq:inequality_for_ellip}
\frac{\theta}{2}\int_{U}|Du|^{2}\dif x\le B[u,u]+C\int_{U}u^{2}\dif x.
\end{equation}
Finally, by Poincare-Friedrichs inequality, the equation \eqref{eq:elliptic_B} is true.
\end{proof}
By \eqref{eq:elliptic_B}, if $\gamma>0$, $B[u,v]$ isn't uniformly elliptic in general. So, $B[u,v]$ does't satisfy the hypotheses of Lax-Milgram theorem in general. So we should give some revisions on bilinear form $B$. Then, we derive the \textbf{first existence theorem for weak solutions.}
\begin{theorem}{First Existence Theorem for weak solutions}
\label{thm:1st_exist}
There is a number $\gamma\ge 0$ such that for each $\mu\ge\gamma$ and each function $f\in L^{2}(U)$, there exists a unique weak solution $u\in H_{0}^{1}(U)$ of the boundary-value problem
\begin{equation}
\label{eq:modified_BVP}
\left\{
\begin{aligned}
Lu+\mu u&=f,x\in U;\\
u&=0,x\in\partial\Omega.\\
\end{aligned}
\right.
\end{equation}
\end{theorem}
\begin{proof}
Choose the parameter $\gamma$ as theorem \ref{thm:energy_estimate}, then define the bilinear form
\begin{equation}
\label{eq:Bmu}
B_{\mu}[u,v]:=B[u,v]+\mu(u,v).
\end{equation}
Then the weak form of equation \eqref{eq:modified_BVP} is
\begin{equation}
B_{\mu}[u,v]=\innerprod{f}{v}.
\end{equation}
By \eqref{eq:elliptic_B}, as $\mu\ge\gamma$, the bilinear form $B_{\mu}$ satisfies uniformly elliptic condition. So by Lax-Milgram theorem, equation \eqref{eq:Bmu} has unique weak solution.
\end{proof}
\begin{remark}
The first existence theorem for weak solutions is a milestone, but we still can't give the existence theorem of equation \eqref{eq:Elliptic_eq}. We should use Fredholm alternative theorem to derive the existence of weak solution.
\end{remark}
\subsection{Fredholm alternative and the solvability}
In this section, we show the Fredholm alternative theorem first, then employ this theorem to derive the existence theorem for weak solutions.
\begin{theorem}{Fredholm alternative}
\label{thm:Fredholm}
Let $K:H\rightarrow H$ be a compact linear operator, then:
\begin{itemize}
\item $\ker(I-K)$ is finite dimensional.
\item $R(I-K)$ is closed.
\item $R(I-K)=\ker(I-K^{*})^{\perp}$.
\item $\ker(I-K)=\{0\}$ if and only if $R(I-K)=H$.
\item $\dim\ker(I-K)=\dim\ker(I-K^{*})$.
\end{itemize}
\end{theorem}
\begin{proof}
Omitted.
\end{proof}
Then, derive the \textbf{dual problem} of equation \eqref{eq:Elliptic_eq}.
\begin{definition}{Dual problem}
\begin{enumerate}
\item The operator $L^{*}$, the formal adjoint of $L$, is:
\begin{equation}
\label{eq:dual_op}
L^{*}v=-\sum_{i,j=1}^{n}\left(a^{ij}v_{x_{j}}\right)_{x_{i}}-\sum_{i=1}^{n}b^{i}v_{x_{i}}+(c-\sum_{i=1}^{n}b_{x_{i}}^{i})v,
\end{equation}
provided $b^{i}\in C^{1}(\bar{U})$.
\item The adjoint bilinear form
\begin{equation}
\label{eq:dualB}
B^{*}:H_{0}^{1}(U)\times H_{0}^{1}(U)\rightarrow\mathbb{R}
\end{equation}
is defined by
\begin{equation}
\label{eq:dual_B}
B^{*}[v,u]=B[u,v]
\end{equation}
for all $u,v\in H_{0}^{1}(U)$.
\item We say that $v\in H_{0}^{1}(U)$ is a weak solution of the adjoint problem
\begin{equation}
\label{eq:adj_problem}
\left\{
\begin{aligned}
L^{*}v&=f,x\in U;\\
v&=0,x\in\partial U.
\end{aligned}
\right.
\end{equation}
provided $B^{*}[v,u]=(f,u)$ for all $u\in H_{0}^{1}(U)$.
\end{enumerate}
\end{definition}
\begin{remark}
\begin{itemize}
\item \eqref{eq:dual_op} is called formal adjoint, for $(Lu,v)=(u,L^{*}v)$.
\item \eqref{eq:adj_problem} is the dual form of equation \eqref{eq:Elliptic_eq}.
\end{itemize}
\end{remark}
To show the solvability of problem \eqref{eq:Elliptic_eq}, we derive the following theorem.
\begin{theorem}{Second Existence Theorem for weak solutions}
\label{thm:2nd_exist}
\begin{enumerate}
\item Precisely one of the following statements holds: either for each $f\in L^{2}(U)$ there exists a unique weak solution $u$ of the boundary value problem \eqref{eq:Elliptic_eq} (marked as $\alpha$), or else there exists a weak solution $u\neq 0$ of the homogeneous problem (marked as $\beta$)
\begin{equation}
\label{eq:homo_prob}
\left\{
\begin{aligned}
Lu&=0,x\in U;\\
u&=0,x\in \partial U.
\end{aligned}
\right.
\end{equation}
\item Furthermore, should assertion $(\beta)$ hold, the dimension of the subspace $N\subset H_{0}^{1}(U)$ of weak solutions of \eqref{eq:homo_prob} is finite and equals the dimension of the subspace $N^{*}\subset H_{0}^{1}(U)$ of weak solutions of
\begin{equation}
\label{eq:homo_dual}
\left\{
\begin{aligned}
L^{*}v&=0,x\in U;\\
v&=0,x\in\partial U.\\
\end{aligned}
\right.
\end{equation}
\item Finally, the BVP \eqref{eq:Elliptic_eq} has a weak solution if and only if
\begin{equation}
(f,v)=0\;\forall v\in N^{*}.
\end{equation}
\end{enumerate}
\end{theorem}
\begin{remark}
To prove this theorem, we should try to use theorem \ref{thm:1st_exist}. The main idea is to construct a compact operator $K$, such that the weak form of \eqref{eq:Elliptic_eq} is $(I-K)u=h$, then use theorem \ref{thm:Fredholm}.
\end{remark}
\begin{proof}
First, choose $\gamma$ as theorem \ref{thm:1st_exist} suggests, then for each $g\in L^{2}(U)$, there exists a unique $u\in H_{0}^{1}(U)$ solving:
\begin{equation}
\label{eq:auxiliary_weak_form}
B_{\gamma}[u,v]=\innerprod{g}{v}\forall v\in H_{0}^{1}(U).
\end{equation}
Write $u=L_{\gamma}^{-1}g$ if equation \eqref{eq:auxiliary_weak_form} holds. As the weak form of \eqref{eq:Elliptic_eq} is $B[u,v]=\innerprod{f}{v}$, we can see $B_{\gamma}[u,v]=\innerprod{f+\gamma u}{v}$, i.e. $u=L_{\gamma}^{-1}(f+\gamma u)$. Then choose operator $K=\gamma L_{\gamma}^{-1}$, $h=L_{\gamma}^{-1}f$, \eqref{eq:auxiliary_weak_form} is equivalent to
\begin{equation}
\label{eq:compact_weak_form}
(I-K)u=h.
\end{equation}
The next step is to show that $K:L^{2}(U)\rightarrow L^{2}(U)$ is a bounded, linear, compact operator. In fact, we only need to show $K$ is compact. By \eqref{eq:auxiliary_weak_form}, we can see:
\begin{equation}
\label{eq:norm_estimate}
\beta\norm{u}_{H_{0}^{1}(U)}^{2}\le B_{\gamma}[u,u]=\innerprod{g}{u}\le\norm{g}_{L^{2}(U)}\norm{u}_{L^{2}(U)}\le\norm{g}_{L^{2}(U)}\norm{u}_{H_{0}^{1}(U)}.
\end{equation}
By \eqref{eq:norm_estimate}, there exists a constant $C>0$ such that $\norm{Kg}_{H_{0}^{1}(U)}\le C\norm{g}_{L^{2}(U)}$. As $H_{0}^{1}(U)\subset\subset L^{2}(U)$, $K$ is a compact operator.
Then, use theorem \ref{thm:Fredholm} on equation \eqref{eq:compact_weak_form}. If $\ker(I-K)=\{0\}$, theorem \ref{thm:Fredholm} shows that $I-K$ is also a surjective, i.e. statement $(\alpha)$ is true. Otherwise, $\ker(I-K)\neq\{0\}$ means that $\exists u\in H_{0}^{1}(U)$ such that $(I-K)u=0$, i.e. $u$ satisfies equation \eqref{eq:homo_prob}. Then statement $(\beta)$ is true. If $N\neq\{0\}$, while
\begin{equation}\dim\ker(I-K)=\dim\ker(I-K^{*})<\infty,
\end{equation} we can see $\dim N=\dim N^{*}<\infty$.
Finally, if $(I-K)u=h$ has a solution, $v\in N^{*}$, we can see:
\begin{equation}
\innerprod{h}{v}=\innerprod{(I-K)u}{v}=\innerprod{u}{(I-K^{*})v}=0.
\end{equation}
By $h=L_{\gamma}^{-1}f$, we can see:
\begin{equation}
\innerprod{h}{v}=\frac{1}{\gamma}\innerprod{Kf}{v}=\frac{1}{\gamma}\innerprod{f}{K^{*}v}=\frac{1}{\gamma}\innerprod{f}{v}=0.
\end{equation}
So:$\innerprod{f}{v}=0$.
\end{proof}
\subsection{Spectrum and third existence theorem}
In this section, we will discuss on the \textbf{spectrum} of an operator $L$, then derive the existence of weak solutions for eigenvalue problem.
\begin{theorem}{Third existence theorem for weak solutions}
\begin{enumerate}
\item There exists an at most countable set $\Sigma\subset\mathbb{R}$ such that the BVP
\begin{equation}
\label{eq:eigen-BVP}
\left\{
\begin{aligned}
Lu&=\lambda u+f,x\in U;\\
u&=0,x\in\partial U\\
\end{aligned}
\right.
\end{equation}
has a unique weak solution for each $f\in L^{2}(U)$ if and only if $\lambda\notin\Sigma$.
\item If $\Sigma$ is infinite, then $\Sigma=\{\lambda_{k}\}_{k=1}^{\infty}$, the values of a nondecreasing sequence with $\lambda_{k}\rightarrow+\infty$.
\end{enumerate}
\end{theorem}
\begin{remark}
\begin{enumerate}
\item $\Sigma$ is called the \textbf{spectrum} of operator $L$.
\item If $f=0$, the BVP \eqref{eq:eigen-BVP} is called eigenvalue problem, and if there exists a solution $\omega\neq 0$, $\lambda$ is called an \textbf{eigenvalue} of $L$, and $\omega$ is a corresponding \textbf{eigenfunction}.
\end{enumerate}
\end{remark}
\begin{proof}
By theorem \ref{thm:2nd_exist}, if $\lambda\in\Sigma$, the homogeneous eigenvalue problem
\begin{equation}
\label{eq:homo-eig-prob}
\left\{
\begin{aligned}
Lu&=\lambda u,x\in U,\\
u&=0,x\in\partial U
\end{aligned}
\right.
\end{equation}
has a solution $u\neq 0$. Consider it's weak form, we can see:
\begin{equation}
\label{eq:weak_form_for_eig_BVP}
B_{\gamma}[u,v]=(\lambda+\gamma)\innerprod{u}{v}.
\end{equation}
i.e.
\begin{equation}
u=L_{\gamma}^{-1}(\gamma+\lambda)u=\frac{\lambda+\gamma}{\gamma}Ku.
\end{equation}
As $u\neq 0$, $u$ is the eigenvector of operator $K$, the corresponding eigenvalue is $\frac{\gamma}{\lambda+\gamma}$. By theorem \ref{thm:2nd_exist}, $K$ is a compact operator, so the Spectrum set $S$ of operator $K$ is either finite set, or else the values of a sequence converging to zero. It means that $\Sigma$ is at most countable, and if $|\Sigma|=\infty$, $\lambda_{k}\rightarrow\infty$.
\end{proof}
Finally, we note the boundedness of eigenvalue problem.
\begin{theorem}{Boundedness of the inverse}
If $\lambda\notin\Sigma$, there exists a constant $C$ such that
\begin{equation}
\label{eq:bounded}
\norm{u}_{L^{2}(U)}\le C\norm{f}_{L^{2}(U)}
\end{equation}
whenever $f\in L^{2}(U)$ and $u$ is the unique weak solution of \eqref{eq:eigen-BVP}. The constant $C$ depends only on $\lambda,U$ and the coefficients of $L$.
\end{theorem}
\begin{proof}
If not, there would exist sequences $\{f_{k}\}\subset L^{2}(U)$ and $\{u_{k}\}\subset H_{0}^{1}(U)$ such that
\begin{equation}
\label{eq:counter}
\left\{
\begin{aligned}
Lu_{k}&=\lambda u_{k}+f_{k},x\in U,\\
u_{k}&=0,x\in \partial U,\\
\end{aligned}
\right.
\end{equation}
but
\begin{equation}
\norm{u_{k}}_{L^{2}(U)}>k\norm{f_{k}}_{L^2(U)}.
\end{equation}
Assume WLOG, $\norm{u_{k}}_{L^2(U)}=1$, we can see $\norm{f_{k}}\rightarrow 0$. Then there exists a subsequence $\{u_{k_{j}}\}$ satisfies:
\begin{equation}
\label{eq:convergence}
\left\{
\begin{aligned}
u_{k_{j}}&\rightharpoonup u\text{ in }H_{0}^{1}(U),\\
u_{k_{j}}&\rightarrow u\text{ in }L^{2}(U).\\
\end{aligned}
\right.
\end{equation}
Then $u$ is a weak solution of \eqref{eq:homo-eig-prob}. Since $\lambda\notin\Sigma$, $u\equiv 0$. But $\norm{u_{k}}_{L^{2}(U)}\equiv 1$, contradict!
\end{proof}
\section{Interior Regularity}
Now, we try to discuss on the \textbf{regularity} of weak solutions. Consider a general PDE $Lu=f$, we find the weak solution $u\in H^{1}(U)$. However, if we set $f\in H^{m}(U)$, we expect $u\in H^{m+2}(U)$, it means we derive stronger regularity about the weak solution of $Lu=f$. The point of regularity is to derive analytic estimates from the structural, algebraic assumption of ellipticity.
First, recall the definition of difference quotients, and some related properties.
\begin{definition}{Difference quotient}
\label{def:diff_quo}
The $i$-th difference quotient of size $h$ is
\begin{equation}
\label{eq:diff_quo}
D_{i}^{h}u(x)=\frac{u(x+he_{i})-u(x)}{h}(i=1,\cdots,n)
\end{equation}
for $x\in V$ and $h\in\mathbb{R}$, $0<|h|<\text{dist}(V,\partial U)$. And $D^{h}(u):=\left(D_{1}^{h}u,\cdots,D_{n}^{h}u\right)$.
\end{definition}
The concept of difference quotients is related to weak derivatives, as the following theorem:
\begin{theorem}
\label{thm:diff_and_dir}
\begin{enumerate}
\item Suppose $1\le p<\infty$ and $u\in W^{1,p}(U)$, for each $V\subset\subset U$,
\begin{equation}
\norm{D^{h}u}_{L^{p}(V)}\le C\norm{Du}_{L^{p}(U)}
\end{equation}
for some constant $C$ and all $0<|h|<\frac{1}{2}\text{dist}(V,\partial U).$
\item Assume $1<p<\infty$, $u\in L^{p}(V)$, and there exists a constant $C$ such that
\begin{equation}
\norm{D^{h}u}_{L^{p}(V)}\le C
\end{equation}
for all $0<|h|<\frac{1}{2}\text{dist}(V,\partial U)$, then $u\in W^{1,p}(V)$ with $\norm{Du}_{L^{p}(V)}\le C$.
\end{enumerate}
\end{theorem}
\begin{proof}
see \cite{evans2022partial} section 5.8, theorem 3.
\end{proof}
Then, introduce two lemmas for the integrate of difference quotients.
\begin{lemma}
\label{lem:diff_quo}
For a bounded open set $U$, and open set $W\subset\subset U$,
assume $v,w\in H^{1}(U)$, $\text{supp}(w)\subset W$, $h<\frac{1}{2}\text{dist}(W,\partial U)$, then we can see:
\begin{equation}
\label{eq:int_by_part}
\int_{U}vD_{k}^{-h}w\dif x=-\int_{U}wD_{k}^{h}v\dif x,
\end{equation}
and
\begin{equation}
\label{eq:leibniz_for_diff}
D_{k}^{h}(vw)=v^{h}D_{k}^{h}w+wD_{k}^{h}v,
\end{equation}
for $v^{h}(x):=v(x+he_{k})$.
\end{lemma}
\begin{proof}
For equation \eqref{eq:int_by_part}, as $\text{supp} w\subset W$, we can see:
\begin{equation}
\begin{aligned}
RHS&=-\int_{W}w(x)\frac{v(x+he_{k})-v(x)}{h}\dif x\\
&=\frac{1}{h}\int_{W}w(x)v(x)\dif x-\frac{1}{h}\int_{W}w(x)v(x+he_{k})\dif x.
\end{aligned}
\end{equation}
set $\tilde{W}:=\{y:y=x+he_{k},x\in W\}$, we can see:
\begin{equation}
\begin{aligned}
LHS&=\frac{1}{h}\int_{U}v(x)\left(w(x)-w(x+he_{k})\right)\dif x\\
&=\frac{1}{h}\int_{W}v(x)w(x)\dif x-\frac{1}{h}\int_{\tilde{W}}v(x)w(x-he_{k})\dif x.
\end{aligned}
\end{equation}
By integral substitution, choose $y:=x-he_{k}$, we can see:
\begin{equation}
\int_{\tilde{W}}v(x)w(x-he_{k})\dif x=\int_{W}v(y+he_{k})w(y)\dif y.
\end{equation}
So, equation \eqref{eq:int_by_part} is true. Then, for equation \eqref{eq:leibniz_for_diff}, we can see:
\begin{equation}
\begin{aligned}
LHS&=\frac{v(x+he_{k})w(x+he_{k})-v(x)w(x)}{h}\\
&=\frac{v(x+he_{k})(w(x+he_{k})-w(x))+w(x)(v(x+he_{k})-v(x))}{h}\\
&=v^{h}D_{k}^{h}w+wD_{k}^{h}v=RHS.
\end{aligned}
\end{equation}
\end{proof}
Then, we give the main result for this section:
\begin{theorem}{Interior $H^{2}$-regularity}
\label{thm:interior_regularity}
Assume $a^{ij}\in C^{1}(U)$, $b^{i},c\in L^{\infty}(U)$, and $f\in L^{2}(U)$. Suppose furthermore that $u\in H^{1}(U)$ is a weak solution of the elliptic PDE $Lu=f$, then:
\begin{equation}
u\in H_{loc}^{2}(U);
\end{equation}
and for each open subset $V\subset\subset U$ we have the estimate
\begin{equation}
\label{eq:estimate_H2_u}
\norm{u}_{H^{2}(V)}\le C\left(\norm{f}_{L^{2}(U)}+\norm{u}_{L^{2}(U)}\right),
\end{equation}
the constant $C$ depending only on $V$, $U$, and the coefficients of operator $L
$.
\end{theorem}
Before the proof of this theorem, we should give some remarks.
\begin{remark}
\begin{enumerate}
\item In this theorem, we don't require $u\in H_{0}^{1}(U)$.
\item Since $u\in H_{loc}^{2}(U)$, we have
\begin{equation}
Lu=f\text{ a.e. in U}.
\end{equation}
\end{enumerate}
\end{remark}
\textbf{The idea} : First, construct a truncated function $\zeta\in C^{\infty}(U)$ such that $V\subset\subset W\subset\subset U$, $\zeta|_{V}\equiv 1$, $\zeta|_{U\setminus W}\equiv 0$. Then, choose a test function
\begin{equation}
\label{eq:test_func}
v(x)=-D_{k}^{-h}\left(\zeta^{2}D_{k}^{h}u(x)\right)\in H_{0}^{1}(U).
\end{equation}
In fact, if $u\in C^{2}(U)$, $v$ is a difference quotient approximation for $D^{2}u$. Finally, use the relation $B[u,v]=(f,v)$ to approximate $\norm{D_{k}^{h}Du}_{L^{2}(V)}$, and use the second part of theorem \ref{thm:diff_and_dir}.
\begin{proof}
By the definition of weak solution, $B[u,v]=(f,v)$. Then we can see:
\begin{equation}
\label{eq:modified_weak_sol}
\sum \int_{U}a^{ij}u_{x_{i}}v_{x_{j}}\dif x=\int_{U}(f-\sum b_{i}u_{x_{i}}-cu)v\dif x.
\end{equation}
mark
\begin{equation}
\label{eq:expression_for_A}
A=\sum\int_{U}a^{ij}u_{x_{i}}v_{x_{j}}\dif x,
\end{equation}
and choose $v$ as \eqref{eq:test_func}, according to lemma \ref{lem:diff_quo}, we can derive:
\begin{equation}
\label{eq:partition_for_A}
\begin{aligned}
A&=-\int_{U}\sum a^{ij}u_{x_{i}}\left(D_{k}^{-h}\left(\zeta^{2}D_{k}^{h}u(x)\right)\right)_{x_{j}}\dif x\\
&=\sum\int_{U}D_{k}^{h}\left(a^{ij}u_{x_{i}}\right)\left(\zeta^{2}D_{k}^{h}u(x)\right)_{x_{j}}\dif x\\
&=\sum\int_{U}\left(a^{ij,h}D_{k}^{h}u_{x_{i}}+u_{x_{i}}D_{k}^{h}(a^{ij})\right)\left(2\zeta\zeta_{x_{j}}D_{k}^{h}u(x)+\zeta^{2}\left(D_{k}^{h}u(x)\right)_{x_{j}}\right)\dif x\\
&=\sum\int_{U}a^{ij,h}\zeta^{2}D_{k}^{h}u_{x_{i}}D_{k}^{h}u_{x_{j}}\dif x\\
&+\sum\int_{U}\left(2\zeta\zeta_{x_{j}}u_{x_{i}}D_{k}^{h}(a^{ij})D_{k}^{h}u(x)+2\zeta\zeta_{x_{j}}a^{ij,h}D_{k}^{h}u_{x_{i}}D_{k}^{h}u(x)+\zeta^{2}u_{x_{i}}D_{k}^{h}(a^{ij})\left(D_{k}^{h}u(x)\right)_{x_{j}}\right)\dif x\\
&:=A_{1}+A_{2}.
\end{aligned}
\end{equation}
By the uniform elliptic property, there exists $\theta>0$ such that
\begin{equation}
\label{eq:approx_A1}
A_{1}\ge \theta\int_{U}\zeta^{2}|D_{k}^{h}Du|^{2}\dif x.
\end{equation}
Then we try to approx $|A_{2}|$. As $a^{ij}\in C^{1}(U)$, $\zeta\in C^{\infty}(U)$, we can see:
\begin{equation}
\label{eq:approx_A2}
\begin{aligned}
|A_{2}|&\le \sum\int_{U}\left(C_{1}\zeta|u_{x_{i}}||u(x)|+C_{2}\zeta|D_{k}^{h}u_{x_{i}}||D_{k}^{h}u(x)|+C_{3}\zeta|u_{x_{i}}|\left(D_{k}^{h}u(x)\right)_{x_{j}}\right)\dif x\\
&\le C\int_{U}\left(\zeta|Du||u|+\zeta|D_{k}^{h}Du||D_{k}^{h}u|+\zeta|Du||D_{k}^{h}Du|\right)\dif x\\
&\le \frac{\theta}{2} \int_{U}\zeta^{2}|D_{k}^{h}Du|^{2}\dif x+\tilde{C}\int_{U}|Du|^{2}+|D_{k}^{h}u|^{2}\dif x\\
&\le\frac{\theta}{2}\int_{U}\zeta^{2}|D_{k}^{h}Du|^{2}\dif x+M\int_{U}|Du|^{2}\dif x.
\end{aligned}
\end{equation}
In equation \eqref{eq:approx_A2}, $C_{1},C_{2},C_{3},C,\tilde{C},M$ are all constants. The first step follows from $a^{ij},\zeta\in C^{1}(U)$, the second and the third steps from Cauchy-Schwarz inequality, and the last from theorem \ref{thm:diff_and_dir}.
Combining \eqref{eq:approx_A1} and \eqref{eq:approx_A2}, we can see
\begin{equation}
\label{eq:approx_A}
A\ge \frac{\theta}{2}\int_{U}\zeta^{2}|D_{k}^{h}Du|^{2}\dif x-M\int_{U}|Du|^{2}\dif x.
\end{equation}
The next step is to approximate the right-hand integral
\begin{equation}
\label{eq:integral_B}
B:=\int_{U}(f-\sum b_{i}u_{x_{i}}-cu)v\dif x.
\end{equation}
First, as $b_{i}\in C^{1}(U)$, we can see
\begin{equation}
\label{eq:approx1_B}
|B|\le C\int_{U}(|f|+|Du|+|u|)|v|\dif x.
\end{equation}
Then, consider
\begin{equation}
\label{eq:approx_int_v2}
\begin{aligned}
\int_{U}v^{2}\dif x&=\int_{U}|D_{k}^{-h}(\zeta^{2}D_{k}^{h}u)|^{2}\dif x\\
&\le C\int_{U}D|\zeta^{2}D_{k}^{h}u|^{2}\dif x\\
&\le C\int_{U}\zeta^{2}|D_{k}^{h}Du|^{2}\dif x+C\int_{W}|D_{k}^{h}u|^{2}\dif x\\
&\le C\int_{U}\left(|Du|^{2}+\zeta^{2}|D_{k}^{h}Du|^{2}\right)\dif x.
\end{aligned}
\end{equation}
The second step follows from theorem \ref{thm:diff_and_dir}, the third step follows from the Leibniz formula, and the final step follows from theorem \ref{thm:diff_and_dir} as well.
Finally, by \eqref{eq:approx1_B} , \eqref{eq:approx_int_v2} and Cauchy-Schwarz inequality, there exists constant $C$ such that
\begin{equation}
\label{eq:approx_B}
|B|\le\frac{\theta}{4}\int_{U}\zeta^{2}|D_{k}^{h}Du|^{2}\dif x+C\int_{U}\left(|f|^2+|u|^2+|Du|^2\right)\dif x.
\end{equation}
By the estimation \eqref{eq:approx_A} and \eqref{eq:approx_B}, it's clear that $\forall h>0$, $\exists$ constant $C>0$, such that
\begin{equation}
\int_{V}|D_{k}^{h}Du|^{2}\dif x\le C(\norm{f}_{L^{2}(U)}+\norm{u}_{H^{1}(U)}).
\end{equation}
It means that $Du\in H^{1}(V)$, and
\begin{equation}
\norm{u}_{H^{2}(V)}\le C\left(\norm{f}_{L^{2}(U)}+\norm{u}_{H^{1}(U)}\right).
\end{equation}
Finally, choose auxiliary function $\xi\in C^{\infty}(U)$, $\text{supp}\xi\subset U$ and $\xi\equiv 1$ on $W$, set $v=\xi^{2}u$, according to equation \eqref{eq:modified_weak_sol}, we can see:
\begin{equation}
\int_{U}\xi^{2}|Du|^{2}\dif x\le C\int_{U}(f^{2}+u^2)\dif x.
\end{equation}
Then:
\begin{equation}
\label{eq:estimate_u_H1}
\norm{u}_{H^{1}(W)}\le C\left(\norm{f}_{L^{2}(U)}+\norm{u}_{L^{2}(U)}\right).
\end{equation}
\end{proof}
\begin{remark}
Theorem \ref{thm:interior_regularity} shows the condition for the higher regularity of weak solutions.
\end{remark}
Then, we introduce the higher interior regularity.
\begin{theorem}{Higher interior regularity}
\label{thm:higher_int_regular}
Let $m$ be a nonnegative integer, and assume $a^{ij},b^{i},c\in C^{m+1}(U)$, and $f\in H^{m}(U)$. Suppose $u\in H^{1}(U)$ is a weak solution of the elliptic PDE
\begin{equation}
Lu=f,
\end{equation}
then $u\in H_{loc}^{m+2}(U)$ and for each $V\subset\subset U$ we have the estimate
\begin{equation}
\norm{u}_{H^{m+2}(V)}\le C(\norm{f}_{H^{m}(U)}+\norm{u}_{L^{2}(U)}).
\end{equation}
\end{theorem}
\begin{proof}
We prove this theorem by induction. If $m=0$, theorem \ref{thm:higher_int_regular} is equivalent to theorem \ref{thm:interior_regularity}, so the induction basis is true. Assume theorem \ref{thm:higher_int_regular} is true for $m=k$, i.e. if $a^{ij},b^{i},c\in C^{k+1}(U)$, $f\in H^{k}(U)$, the weak solution $u\in H^{1}(U)$ satisfies
\begin{equation}
\norm{u}_{H^{k+2}(W)}\le C(\norm{f}_{H^{k}(U)}+\norm{u}_{L^{2}(U)}).
\end{equation}
for each $W\subset\subset U$ and approximate constant $C$, and $u\in H_{loc}^{k+2}(U)$. Then let $\alpha$ be any multiindex with $|\alpha|=m+1$ and choose any auxiliary function $\tilde{v}\in C_{c}^{\infty}(W)$. Choose the test function $v=(-1)^{|\alpha|}D^{\alpha}\tilde{v}$, insert it into the weak form $B[u,v]=(f,v)$, perform some integrations by parts, we discover:
\begin{equation}
\label{eq:Buv_int_by_part}
\begin{aligned}
B[u,v]&=\sum\int_{U}a^{ij}u_{x_{i}}(-1)^{|\alpha|}(D^{\alpha}\tilde{v})_{x_{j}}\dif x+\sum\int_{U}b^{i}u_{x_{i}}(-1)^{|\alpha|}D^{\alpha}\tilde{v}\dif x+\int_{U}cu(-1)^{|\alpha|}D^{\alpha}\tilde{v}\dif x\\
&=\sum\int_{U}D^{\alpha}(a^{ij}u_{x_{i}})\tilde{v}_{x_{j}}\dif x+\sum\int_{U}D^{\alpha}(b^{i}u_{x_{i}})\tilde{v}\dif x+\int_{U}D^{\alpha}(cu)\tilde{v}\dif x\\
&=B[D^{\alpha}u,\tilde{v}]-\sum_{i,j}\sum_{\beta\le\alpha}\int_{U}\binom{\alpha}{\beta}(D^{\alpha-\beta}a^{ij}D^{\beta}u_{x_{i}})_{x_{j}}\tilde{v}\dif x+\sum_{i}\sum_{\beta\le\alpha}\int_{U}D^{\alpha-\beta}b^{i}D^{\beta}u_{x_{i}}\tilde{v}\dif x\\
&+\sum_{\beta\le\alpha}\int_{U}D^{\alpha-\beta}cD^{\beta}u\tilde{v}\dif x.
\end{aligned}
\end{equation}
So if we write $\tilde{u}:=D^{\alpha}u$, we can see:
\begin{equation}
B[\tilde{u},\tilde{v}]=(\tilde{f},\tilde{v}).
\end{equation}
Where
\begin{equation}
\tilde{f}:=D^{\alpha}f-\sum_{\beta<\alpha}\binom{\alpha}{\beta}\left[-\sum(D^{\alpha-\beta}a^{ij}D^{\beta}u_{x_{i}})_{x_{j}}+\sum D^{\alpha-\beta}b^{i}D^{\beta}u_{x_{i}}+D^{\alpha-\beta}cD^{\beta}u\right].
\end{equation}
We can see that $\tilde{u}$ is the weak solution of equation $L\tilde{u}=\tilde{f}$. Since $a^{ij},b^{i},c\in C^{k+2}(U)$, $f\in H^{k+1}(U)$, we can see $\tilde{f}\in L^{2}(W)$, and
\begin{equation}
\norm{\tilde{f}}_{L^{2}(W)}\le C\left(\norm{f}_{H^{m+1}(U)}+\norm{u}_{L^{2}(U)}\right).
\end{equation}
In light of theorem \ref{thm:interior_regularity}, we see $\tilde{u}\in H^{2}(V)$ with
\begin{equation}
\norm{\tilde{u}}_{H^{2}(V)}\le\ C(\norm{f}_{H^{m+1}(U)}+\norm{u}_{L^{2}(U)}).
\end{equation}
As the inequality holds for all multiindex $\alpha$ satisfies $|\alpha|=m+1$, the proof is completed.
\end{proof}
\section{Boundary regularity}
Now, we extend to give the regularity of weak solution for homogeneous Dirichlet boundary value problem. In fact, when it comes to Dirichlet BVPs, the result comes to be stronger.
\begin{theorem}{Boundary $H^{2}$-regularity}
\label{thm:boundary_regularity}
Assume $a^{ij}\in C^{1}(\bar{U}), b^{i},c\in L^{\infty}(U)$ and $f\in L^{2}(U)$. Suppose that $u\in H_{0}^{1}(U)$ is a weak solution of the elliptic BVP \eqref{eq:Elliptic_eq}. Assume finally $\partial U$ is $C^{2}$, then $u\in H^{2}(U)$ and we have the estimate
\begin{equation}
\label{eq:estimate_for_Dirichlet}
\norm{u}_{H^{2}(U)}\le C(\norm{f}_{L^{2}(U)}+\norm{u}_{L^{2}(U)}).
\end{equation}
The constant $C$ depending only on $U$ and the coefficients of $L$.
\end{theorem}
\begin{remark}
\begin{itemize}
\item Main difference from theorem \ref{thm:interior_regularity}: now $u\in H^{2}(U)$ rather than $u\in H_{loc}^{2}(U)$.
\item If equation \eqref{eq:Elliptic_eq} has unique solution, we can see $\norm{u}_{H^{2}(U)}\le C\norm{f}_{L^{2}(U)}$ from theorem \ref{thm:boundary_regularity}. This result shows the \textbf{well-posed} of elliptic equation.
\item In this theorem, we assume $u\equiv 0$ along $\partial U$ in the trace case.
\end{itemize}
\end{remark}
\textbf{The idea of the proof}: First, consider the special case that $U$ is a half-ball, then $\forall x_{0}\in \partial U$, choose a homologeous map from $B(x_{0},\epsilon)\cap U$ to the half ball. Finally, use the compactness of $\partial U$.
\begin{proof}
First, consider the case $U=B(0,1)\cap\mathbb{R}_{+}^{n}$. The target is to show that $\exists V\subset\subset U$ with $\partial V\cap\partial U\neq\emptyset$ such that
\begin{equation}
\label{eq:estimate_ball}
\norm{u}_{H^{2}(V)}\le C(\norm{f}_{L^{2}(U)}+\norm{u}_{L^{2}(U)}).
\end{equation}
To derive the $H^{2}$ norm on subset $V:=B(0,\frac{1}{2})\cap\mathbb{R}_{+}^{n}$, we first derive the truncated function $\zeta\in C^{\infty}(U)$ satisfies:
\begin{equation}
\label{eq:truncated_func}
\left\{
\begin{aligned}
&\zeta\equiv 1,x\in B(0,\frac{1}{2})\\
&\zeta\equiv 0,x\notin B(0,1),\\
&0\le\zeta\le 1,\\
\end{aligned}
\right.
\end{equation}
such that $\zeta$ vanishes near the curved part of $\partial U$. Since $u$ is a weak solution of equation \eqref{eq:Elliptic_eq}, we have $B[u,v]=(f,v)$ for all $v\in H_{0}^{1}(V)$. Consequently, we can also write the auxiliary equation \eqref{eq:auxiliary_weak_form}. Then we should derive the form of $v\in H_{0}^{1}(U)$.
Consider $1\le k\le n-1$, set $v=-D_{k}^{-h}(\zeta^{2}D_{k}^{h}u)$, first we claim that $v\in H_{0}^{1}(U)$. In fact:
\begin{equation}
\label{eq:expression_for_v}
v(x)=\frac{1}{h^2}\left[\zeta^2(x-he^{k})u(x)+\zeta^2(x)u(x)-\zeta^2(x)u(x+he^{k})-\zeta^2(x-he^{k})u(x-he^{k})\right].
\end{equation}
On the face $\{x_{n}=0\}$, by the definition of weak solution, $u(x)=0$. And near the curved part of $\partial U$, by the definition of $\zeta$, $\zeta(x)=0$. So on $\partial U$, we can see $v(x)\equiv 0$, i.e. $v(x)\in H_{0}^{1}(U)$.
Then, by equation \eqref{eq:auxiliary_weak_form} and the same method as theorem \ref{thm:interior_regularity}, we can see that for $1\le k\le n-1$,
\begin{equation}
\int_{V}|D_{k}^{h}Du|^{2}\dif x\le C\left(\norm{f}_{L^{2}(U)}+\norm{u}_{H^{1}(U)}\right).
\end{equation}
i.e.
\begin{equation}
\label{eq:estimate_1_for_half_ball}
\sum_{\substack{k+l<2n\\k=l=1}}^{n}\int_{V}|u_{x_{k}x_{l}}^{2}|\dif x\le C\left(\norm{f}_{L^{2}(U)}+\norm{u}_{H^{1}(U)}\right).
\end{equation}
But we can't estimate $\norm{u_{x_{n}x_{n}}}_{L^{2}(V)}$ by this method, for $x-he^{n}$ may lie outside the region $U$. Now we rewrite the equation \eqref{eq:Elliptic_eq} by nondivergence form, i.e.
\begin{equation}
-\sum_{i,j=1}^{n}a^{ij}u_{x_{i}x_{j}}+\sum_{i=1}^{n}\tilde{b}^{i}u_{x_{i}}+cu=f.
\end{equation}
As $a^{ij}(x)$ satisfies \textbf{uniformly elliptic condition}, there exists $\theta>0$ such that $a^{nn}(x)\ge \theta\;\forall x\in U$. So:
\begin{equation}
\label{eq:estimate_2_for_half_ball}
|u_{x_{n}x_{n}}|\le C\left(\sum_{\substack{i,j=1\\i+j<2n}}^{n}|u_{x_{i}x_{j}}|+|Du|+|u|+|f|\right).
\end{equation}
By \eqref{eq:estimate_1_for_half_ball}, \eqref{eq:estimate_2_for_half_ball} and \eqref{eq:estimate_u_H1}, we conclude $u\in H^{2}(V)$ and
\begin{equation}
\label{eq:estimate_on_half_ball}
\norm{u}_{H^{2}(V)}\le C\left(\norm{f}_{L^{2}(U)}+\norm{u}_{L^{2}(U)}\right).
\end{equation}
Then, we drop the assumption that $U$ is a half-ball. In general case, we choose any point $x^{0}\in\partial U$ and note that since $\partial U$ is $C^{2}$, we may assume that
\begin{equation}
U\cap B(x^{0},r)=\{x\in B(x^{0},r)|x_{n}>\gamma(x_{1},\cdots,x_{n-1})\}
\end{equation}
for some $r<0$ and some $C^{2}$ function $\gamma$. Consider the "flatten out" map as follows:
\begin{equation}
\Phi^{i}(x)=\left\{
\begin{aligned}
&x_{i},i=1,\cdots,n-1;\\
&x_{n}-\gamma(x_{1},\cdots,x_{n-1}),i=n.\\
\end{aligned}
\right.
\end{equation}
Then write $y=\Phi(x)$, $x=\Psi(y)$ as the linear map from $U\cap B(x^{0},r)$ to $\tilde{U}$. We can see $\tilde{U}$ has a piece of boundary as $y_{n}=0$. Finally, we define $u'(y):=u(\Psi(y))$, it's clear that $u'\in H^{1}(\tilde{U})$ and $u'=0$ on $\partial \tilde{U}\cap \{y_{n}=0\}$. Now, we transform equation \eqref{eq:Elliptic_eq} to the equation related to $u'$ on $\tilde{U}$.
Write the PDE related to $u'$ as
\begin{equation}
\label{eq:modified_equation_for_u}
L'u'=f',
\end{equation}
with the function $f'(y):=f(\Psi(y))$, and the operator
\begin{equation}
L'u':=-\sum_{k,l=1}^{n}(a^{'kl}u'_{y_{k}})_{y_{l}}+\sum_{k=1}^{n}b^{'k}u'_{y_k}+c'u'.
\end{equation}
where
\begin{equation}
\label{eq:aprime}
a^{'kl}(y)=\sum_{r,s=1}^{n}a^{rs}(\Psi(y))\Phi_{x_{r}}^{k}(\Psi(y))\Phi_{x_{s}}^{l}(\Psi(y)),
\end{equation}
\begin{equation}
\label{eq:bprime}
b^{'k}(y)=\sum_{r=1}^{n}b^{r}(\Psi(y))\Phi_{x_{r}}^{k}(\Psi(y)),
\end{equation}
and
\begin{equation}
\label{eq:cprime}
c'(y)=c(\Psi(y)),
\end{equation}
for $y\in U'$, $k,l=1,\cdots,n$. In fact, the operator is derived using the chain rule of derivatives.
If $v'\in H_{0}^{1}(U')$ and $B'[\cdot,\cdot]$ denotes the bilinear form associated with the operator $L'$, we have:
\begin{equation}
\label{eq:coordinate_change_B}
B'[u',v']=\int_{\tilde{U}}\sum a^{'kl}u_{y_k}^{'}v_{y_l}^{'}+\sum b^{'k}u_{y_k}^{'}v'+c'u'v'\dif y.
\end{equation}
Set the function $v'(x)=v(\Psi(x))$, and we define $u'(x)=u(\Psi(x))$ before, by \eqref{eq:coordinate_change_B}, we can see:
\begin{equation}
\label{eq:form_of_B}
\begin{aligned}
B'[u',v']&=\sum\int_{\tilde{U}}a^{'kl}u_{x_{i}}\Psi_{y_{k}}^{i}v_{x_{j}}\Psi_{y_{l}}^{j}\dif y+\sum\int_{\tilde{U}}b^{'k}u_{x_{i}}\Psi_{y_{k}}^{i}v\dif y+\int_{\tilde{U}}c'uv\dif y.
\end{aligned}
\end{equation}
In the following equation, $u$, $v$ means $u(\Psi(y))$, $v(\Psi(y))$ respectively. By equation \eqref{eq:aprime}, we can see:
\begin{equation}
\sum_{k,l}a^{'kl}\Psi_{y_{k}}^{i}\Psi_{y_{l}}^{j}=\sum_{r,s}\sum_{k,l}a^{rs}\Phi_{x_{r}}^{k}\Phi_{x_{s}}^{l}\Psi_{y_{k}}^{i}\Psi_{y_{l}}^{j}=a^{ij}
\end{equation}
since $D\Psi=(D\Phi)^{-1}$. Similarly,
\begin{equation}
\sum_{k=1}^{n}b^{'k}\Psi_{y_{k}}^{i}=b^{i}.
\end{equation}
So:
\begin{equation}
\label{eq:samesol}
B'[u',v']=B[u,v]=\innerprod{f}{v}=\innerprod{f'}{v'},
\end{equation}
i.e. the auxiliary PDE has the same solution as original PDE.
Then we check the operator $L'$ is uniformly elliptic in $U'$. If $y\in U'$ and $\xi\in\mathbb{R}^{n}$, we note that
\begin{equation}
\sum_{k,l=1}^{n}a^{'kl}(y)\xi_{k}\xi_{l}=\sum_{k,l}\sum_{r,s}a^{rs}(\Psi(y))\Phi_{x_{r}}^{k}\Phi_{x_{s}}^{l}\xi_{k}\xi_{l}=\sum_{r,s}a^{rs}(\Psi(y))\eta_{r}\eta_{s}\ge\theta|\eta|^{2}.
\end{equation}
where $\eta=\xi D\Phi$. So $L'$ is uniformly elliptic on $\tilde{U}$. It's clear that $a^{'ij},b^{'i},c'\in C^{1}(\tilde{U})$.
Finally, by equation \eqref{eq:estimate_on_half_ball} and \eqref{eq:samesol}, we can see that
\begin{equation}
\norm{u}_{H^{2}(V)}\le C\left(\norm{f}_{L^{2}(U)}+\norm{u}_{L^{2}(U)}\right)
\end{equation}
for an open neighborhood $V$ of $x^{0}$.
Since $\partial U$ is compact, we can cover $\partial U$ with finitely many sets $V_{1},\cdots, V_{N}$ as above. Sum them up, then complete the proof.
\end{proof}
Then, derive the higher boundary regularity
\begin{theorem}{Higher boundary regularity}
Let $m$ be a nonnegative integer, and assume $a^{ij},b^{i},c\in C^{m+1}(\bar{U})$, and $f\in H^{m}(U)$, suppose that $u\in H_{0}^{1}(U)$ is a weak solution of the BVP
\begin{equation}
\left\{
\begin{aligned}
Lu&=f,x\in U;\\
u&=0,x\in\partial U.
\end{aligned}
\right.
\end{equation}
Assume finally $\partial U\in C^2$, then $u\in H^{m+2}(U)$ and we have the estimate
\begin{equation}
\norm{u}_{H^{m+2}(U)}\le C(\norm{f}_{H^{m}(U)}+\norm{u}_{L^{2}(U)}).
\end{equation}
\end{theorem}
\begin{proof}
Skip. See \cite{evans2022partial} Page 343-345.
\end{proof}
In this section, the basic tool of integration by parts has eventually taken us from weak solution $u\in H_{0}^{1}(U)$ to smooth, classical solutions.
\section{Maximum Principles}
In this section, we concentrate on the properties of elliptic operator $L$, and we assume that $u\in C^{2}(U)$. As $u\in C^{2}(U)$, we can see if $u(x)$ attains its maximum over $U$, then $Du(x_{0})=0,D^{2}u(x_{0})\le 0$. Now, we consider elliptic operators $L$ having the nondivergence form:
\begin{equation}
\label{eq:div_form}
Lu=-\sum_{i,j=1}^{n}a^{ij}u_{x_{i}x_{j}}+\sum_{i=1}^{n}b^{i}u_{x_{i}}+cu,
\end{equation}
where the coefficients $a^{ij},b^{i},c$ are continuous and the uniform ellipticity condition \ref{defn:uniformly_elliptic} holds. Without loss of generality, we assume the symmetry condition $a^{ij}=a^{ji}$.
\subsection{Weak maximum principle}
First, assume $U\subset\mathbb{R}^{n}$ is open and bounded, we will show that if $Lu\le 0$ in $U$ and $c\equiv 0$, $u$ must attain its maximum on $\partial U$.
\begin{theorem}{Weak maximum principle}
\label{thm:WMP}
Assume $u\in C^{2}(U)\cap C^{1}(\bar{U})$ and $c\equiv 0$ in $U$, if $Lu\le 0$ in $U$, then
\begin{equation}
\label{eq:max_principle}
\max_{\bar{U}}u=\max_{\partial U}u.
\end{equation}
\end{theorem}
\begin{proof}
First, consider a stronger case, i.e. $Lu<0$. Assume there exists a point $x_{0}\in U$ such that $u(x_{0})=\max_{U}u(x)$. By the basic vector calculus, we can see:
\begin{equation}
\label{eq:one_order}
Du(x_{0})=\mathbf{0},
\end{equation}
and
\begin{equation}
\label{eq:two_order}
D^{2}u(x_{0})\le 0.
\end{equation}
Mark that $D^{2}u(x_{0})\le 0$ means that the Hesse matrix $D^{2}u(x_{0})$ is semi negative definite. Since $A(x_{0})$ is symmetric and positive definite, there exists an orthogonal matrix $O$ such that
\begin{equation}
OA(x_{0})O^{T}=D,
\end{equation}
while $D$ is a diagonal matrix. Now write $y=x_{0}+O(x-x_{0})$, i.e. $x-x_{0}=O^{T}(y-x_{0})$. Mark $O=(o_{ij})$, by the chain rule of derivatives:
\begin{equation}
u_{x_{i}}=\sum_{k=1}^{n}u_{y_{k}}o_{ki},u_{x_{i}x_{j}}=\sum_{k,l=1}^{n}u_{y_{k}y_{l}}o_{ki}o_{lj}.
\end{equation}
Then, at the point $x_{0}$,
\begin{equation}
\sum_{i,j}a^{ij}u_{x_{i}}u_{x_{j}}=\sum_{k,l}\sum_{i,j} a^{ij}u_{y_{k}y_{l}}o_{ki}o_{lj}=\sum_{i} d^{i}u_{y_{i}y_{i}}
\end{equation}
As $D^{2}u(x_{0})\le 0$, we can see $u_{y_{i}y_{i}}(x_{0})\le 0$, and for $A(x_{0})$ is positive definite, $d^{i}\ge 0$, i.e.
\begin{equation}
\sum_{i,j}a^{ij}u_{x_{i}}u_{x_{j}}\le 0.
\end{equation}
On the other hand, at the point $x_{0}$: