-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchap7.tex
236 lines (232 loc) · 13.3 KB
/
chap7.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
\chapter{Linear Evolution Equations}
In this chapter, we will study the linear PDEs that involves time. We call such PDE \textbf{evolution equations}. Now, we study the \textbf{general second-order parabolic and hyperbolic equations} first. In this chapter, \textbf{the Fourier transform} and \textbf{the semigroup techniques} provide alternative approaches.
\section{The space $H^{-1}(U)$}
In this short section, we will introduce the definition and some basic properties of the Sobolev space $H^{-1}(U)$.
\begin{definition}
We denote by $H^{-1}(U)$ the dual space to $H_{0}^{1}(U)$.
\end{definition}
In other words, $f$ belongs to $H^{-1}(U)$ provided $f$ is a bounded linear functional on $H_{0}^{1}(U)$. In fact, $H_{0}^{1}(U)$ isn't reflexive, and we have:
\begin{equation}
H_{0}^{1}(U)\subset L^{2}(U)\subset H^{-1}(U).
\end{equation}
We write $\innerprod{\cdot}{\cdot}$ to denote the pairing between $H^{-1}(U)$ and $H_{0}^{1}(U)$.
\begin{definition}
If $f\in H^{-1}(U)$, we define the norm
\begin{equation}
\norm{f}_{H^{-1}(U)}:=\sup\left\{\innerprod{f}{u}|u\in H_{0}^{1}(U),\norm{u}_{H_{0}^{1}(U)}\le 1\right\}.
\end{equation}
\end{definition}
Then, we will introduce the characterizations of $H^{-1}(U)$.
\begin{theorem}[characterization of $H^{-1}$]
\begin{itemize}
\item Assume $f\in H^{-1}(U)$, there exist functions $f^{0},f^{1},\cdots,f^{n}$ in $L^{2}(U)$ such that
\begin{equation}
\innerprod{f}{v}=\int_{U}f^{0}v+\sum_{i=1}^{n}f^{i}v_{x_{i}}\dif x.
\end{equation}
\item Furthermore,
\begin{equation}
\norm{f}_{H^{-1}(U)}=\inf\left\{\left(\int_{U}\sum_{i=0}^{n}|f^{i}|^{2}\dif x\right)^{\frac{1}{2}}\right\}.
\end{equation}
\item In particular, we have
\begin{equation}
(v,u)_{L^{2}(U)}=\innerprod{v}{u}
\end{equation}
for all $u\in H_{0}^{1}(U)$, $v\in L^{2}(U)\subset H^{-1}(U)$.
\end{itemize}
\end{theorem}
\section{Second-order Parabolic Equations}
Second-order parabolic PDEs are natural generalizations of the heat equations. We will study the existence and uniqueness of appropriately defined weak solutions, their smoothness and other properties.
\subsection{Definitions}
\subsubsection{Parabolic equations}
In this chapter, we assume $U$ to be an open bounded subset of $\mathbb{R}^{n}$ and $U_{T}:=U\times(0,T]$ for some fixed time $T>0$.
Consider the initial/boundary-value problem:
\begin{equation}
\label{eq:Parabolic_IBVP}
\left\{
\begin{aligned}
u_{t}+Lu&=f,x\in U_{T};\\
u&=0,x\in \partial U\times[0,T];\\
u&=g,x\in U\times\{t=0\}.
\end{aligned}
\right.
\end{equation}
where $f:U_{T}\rightarrow\mathbb{R}$ and $g:U\rightarrow\mathbb{R}$ are given and $u:\bar{U_{T}}\rightarrow\mathbb{R}$ is the unknown. The operator $L$ is the elliptic operator related to time parameter $t$ as divergence form \eqref{eq:div-form_ellip} or non-divergence form \eqref{eq:non_div-form_ellip}, with the uniformly parabolic condition.
\begin{definition}[Uniformly parabolic]
We say that the partial differential operator $\pdfFrac{}{t}+L$ is uniformly parabolic if there exists a constant $\theta>0$ such that
\begin{equation}
\sum_{i,j=1}^{n}a^{ij}(x,t)\xi_{i}\xi_{j}\ge \theta|\xi|^{2}
\end{equation}
for all $(x,t)\in U_{T}$, $\xi\in\mathbb{R}^{n}$.
\end{definition}
In physical terms, the second-order term $\sum a^{ij}u_{i}u_{j}$ represents \textbf{diffusion}, the first-order term $\sum b^{i}u_{i}$ represents \textbf{transport}, and the zeroth-order term $cu$ represents \textbf{creation}.
\subsubsection{Weak solutions}
Now, we consider the operator $L$ has the divergence form , and:
\begin{equation}
\label{eq:weak_sol_conditions}
\begin{aligned}
&a^{ij},b^{i},c\in L^{\infty}(U_{T}),\\
&f\in L^{2}(U_{T}),\\
&g\in L^{2}(U).\\
\end{aligned}
\end{equation}
We will always suppose $a^{ij}=a^{ji}$.
First, we temporarily suppose that $u(x,t)$ is a smooth function on $U_{T}$. Define a series of function $\mathbf{u}:[0,T]\rightarrow H_{0}^{1}(U)$ as
\begin{equation}
[\mathbf{u}(t)](x)=u(x,t).
\end{equation}
and a series $\mathbf{f}:[0,T]\rightarrow L^{2}(U)$ as:
\begin{equation}
[\mathbf{f}(t)](x):=f(x,t).
\end{equation}
Now, choose a fixed function $v\in H_{0}^{1}(U)$, multiply the PDE $\pdfFrac{u}{t}+Lu=f$ by $v$ and integrate by parts, define the bilinear form
\begin{equation}
\label{eq:bilinear_for_parabolic}
B[u,v;t]:=\int_{U}\left(\sum_{i,j=1}^{n}a^{ij}(\cdot,t)u_{i}v_{j}+\sum_{i=1}^{n}b^{i}(\cdot,t)u_{i}v+cuv\right)\dif x,
\end{equation}
we can see that
\begin{equation}
\label{eq:variation_form}
(\mathbf{u}',v)+B[\mathbf{u},v;t]=(\mathbf{f},v)
\end{equation}
\textbf{for each }$0\le t\le T$. The pairing $(\cdot,\cdot)$ denoting the inner product in $L^{2}(U)$.
Then, by \eqref{eq:Parabolic_IBVP}, we can see:
\begin{equation}
u_{t}=g^{0}+\sum_{j=1}^{n}g_{x_{j}}^{j},x\in U_{T}
\end{equation}
for $g^{0}:=f-\sum_{i=1}^{n}b^{i}u_{x_{i}}-cu$ and $g^{j}:=\sum_{i=1}^{n}a^{ij}u_{x_{i}}$. By the definition of $\norm{\cdot}_{H^{-1}(U)}$, we can see:
\begin{equation}
\norm{u_{t}}_{H^{-1}(U)}\le\left(\sum_{j=0}^{n}\norm{g^{j}}_{L^{2}(U)}^{2}\right)^{\frac{1}{2}}\le C\left(\norm{u}_{H_{0}^{1}(U)}+\norm{f}_{L^{2}(U)}\right).
\end{equation}
So, it's reasonable to demand $u_{t}\in H^{-1}(U)$. In the case where $u$ smooth on $U_{T}$, we observe that $u_{t}(\tau)\in L^{2}(U)$. Consequently, the term $(\mathbf{u}',v)$ in equation \eqref{eq:variation_form} can be generally expressed as $\innerprod{\mathbf{u}'}{v}$ on $H_{0}^{1}(U)$. From this, we can derive the definition of a weak solution.
\begin{definition}[Weak Solution]
\label{defn:weak_sol_for_parabolic}
We say a function
\begin{equation}
\mathbf{u}\in L^{2}(0,T;H_{0}^{1}(U)),\mathbf{u}'\in L^{2}(0,T;H^{-1}(U)),
\end{equation}
is a \textbf{weak solution} of the parabolic initial/boundary value problem \eqref{eq:Parabolic_IBVP} provided
\begin{equation}
\label{eq:variation_func}
\innerprod{\mathbf{u}'}{v}+B[\mathbf{u},v;t]=(\mathbf{f},v)
\end{equation}
for each $v\in H_{0}^{1}(U)$ and a.e. time $0\le t\le T$ and $\mathbf{u}(0)=g$.
\end{definition}
\begin{remark}
The space $L^{2}(0,T;H_{0}^{1}(U))$ means that:
\begin{itemize}
\item $\forall t\in [0,T]$, $\mathbf{u}(t)\in H_{0}^{1}(U)$.
\item Mark $f(t):=\norm{\mathbf{u}(t)}_{H_{0}^{1}(U)}$, then $f(t)\in L^{2}(0,T)$.
\end{itemize}
\end{remark}
\subsection{Existence and Uniqueness}
In this section, we will discuss the \textbf{existence} and \textbf{uniqueness} of weak solutions. In Chapter 1, we explored the well-posedness of elliptic equations through the analysis of compact operators. Here, our focus shifts to evolution equations. As the parameter $t$ varies, we select finite-dimensional subspaces $V_{i}$ to approximate the functional space $H_{0}^{1}(U)$. We then seek the approximated solution on $V_{i}$ and take the limit, employing the method known as \textbf{Galerkin approximations}.
\subsubsection{Galerkin approximations}
For the parabolic problem \eqref{eq:Parabolic_IBVP}, we construct the solutions of certain finite-dimensional approximations first. More precisely, by theorem \ref{thm:eig_val_of_sym_op}, if we choose the set of eigenfunctions $\{w_{k}(x)\}$ for the operator $L=-\Delta$, then $\{w_{k}\}_{k=1}^{\infty}$ forms an orthogonal basis of $H_{0}^{1}(U)$, and $\{w_{k}\}_{k=1}^{\infty}$ forms an orthonormal basis of $L^{2}(U)$.
Now, fix $m\in\mathbb{N}^{+}$, we will look for a function $\mathbf{u}_{m}:[0,T]\rightarrow H_{0}^{1}(U)$ with the form:
\begin{equation}
\label{eq:finite_dim_approx}
\mathbf{u}_{m}(t):=\sum_{k=1}^{m}d_{m}^{k}(t)w_{k},
\end{equation}
by the definition \ref{defn:weak_sol_for_parabolic}, the finite dimensional approximation $d_{m}^{k}(t)$ satisfies:
\begin{itemize}
\item
\begin{equation}
\label{eq:bdry_value}
d_{m}^{k}(0)=(g,w_{k}).
\end{equation}
\item
\begin{equation}
\label{eq:main_function}
(\mathbf{u}'_{m},w_{k})+B[\mathbf{u}_{m},w_{k};t]=(\mathbf{f},w_{k}).
\end{equation}
\end{itemize}
In fact, equation \eqref{eq:bdry_value} is obtained from the boundary value $\mathbf{u}(0) = g$. On the subspace $V_{k}$, we can observe that $(\mathbf{u}_{m}(0),w_{k}) = d_{m}^{k}(0) = (g, w_{k})$. Equation \eqref{eq:main_function} is derived from \eqref{eq:variation_func} by replacing $v$ with $w_{k}$. Thus, the function $\mathbf{u}_{m}(t)$ is the \textbf{projection} of the solution $\mathbf{u}$ onto the subspace $\text{span}\{w_{1},\cdots,w_{m}\}$.
\begin{theorem}[Construction of approximate solutions]
For each integer $m=1,2,\cdots$ there exists a unique function $\mathbf{u}_{m}$ of the form \eqref{eq:finite_dim_approx} satisfying \eqref{eq:bdry_value} and \eqref{eq:main_function}.
\end{theorem}
\begin{proof}
By the definition of $\mathbf{u}_{m}$, we can see:
\begin{equation}
\label{eq:ode_left}
(\mathbf{u}'_{m},w_{k})=d_{m}^{k\;'}(t)
\end{equation}
and
\begin{equation}
\label{eq:ode_right}
B[\mathbf{u}_{m},w_{k};t]=\sum_{l=1}^{m}B[w_{l},w_{k};t]d_{m}^{l}(t).
\end{equation}
Now we get an ODE system:
\begin{equation}
\label{eq:ode}
d_{m}^{k\;'}(t)=\sum_{l=1}^{m}B[w_{l},w_{k};t]d_{m}^{l}(t),
\end{equation}
with the initial values
\begin{equation}
\label{eq:ode_init_val}
d_{m}^{k}(0)=(g,w_{k}).
\end{equation}
By the standard existence theory for ODEs, the equation \eqref{eq:ode} equipped with initial value \eqref{eq:ode_init_val} has unique solution $d_{m}^{k}(t)$. Then we can see the solution $\mathbf{u}_{m}$ exists and unique.
\end{proof}
\subsubsection{Energy estimates}
In this section, we need some uniform estimates for the $L^{2}$ norm of $\mathbf{u}_{m}$. It's just the \textbf{energy estimates} for parabolic equation.
\begin{theorem}[Energy estimates]
There exists a constant $C$, depending only on $U,T$ and the coefficients of $L$, such that:
\begin{equation}
\label{eq:energy_estimate}
\max_{0\le t\le T}\norm{\mathbf{u}_{m}(t)}_{L^{2}(U)}+\norm{\mathbf{u}_{m}}_{L^{2}(0,T;H_{0}^{1}(U))}+\norm{\mathbf{u}'_{m}}_{L^{2}(0,T;H^{-1}(U))}\le C\left(\norm{\mathbf{f}}_{L^{2}(0,T;L^{2}(U))}+\norm{g}_{L^{2}(U)}\right).
\end{equation}
\end{theorem}
\begin{proof}
First, by equation \eqref{eq:main_function}, we can see that
\begin{equation}
\label{eq:variation_for_um}
(\mathbf{u}'_{m},\mathbf{u}_{m})+B[\mathbf{u}_{m},\mathbf{u}_{m};t]=(\mathbf{f},\mathbf{u}_{m})
\end{equation}
for a.e. $0\le t\le T$. By the energy estimate for elliptic operator \eqref{eq:elliptic_B}, we can see:
\begin{equation}
\label{eq:parabolic_B}
\beta\norm{\mathbf{u}_{m}}_{H_{0}^{1}(U)}^{2}\le B[\mathbf{u}_{m},\mathbf{u}_{m};t]+\gamma\norm{\mathbf{u}_{m}}_{L^{2}(U)}^{2}.
\end{equation}
So:
\begin{equation}
\frac{1}{2}\frac{\dif \norm{\mathbf{u}_{m}}_{L^{2}(U)}^{2}}{\dif t}+\beta\norm{\mathbf{u}_{m}}_{H_{0}^{1}(U)}^{2}\le\gamma\norm{\mathbf{u}_{m}}_{L^{2}(U)}^{2}+(\mathbf{f},\mathbf{u}_{m}).
\end{equation}
By Cauchy-Schwarz inequality, write $\eta(t):=\norm{\mathbf{u}_{m}(t)}_{L^{2}(U)}^{2}$, $\xi(t):=\norm{\mathbf{f}(t)}_{L^{2}(U)}^{2}$, we can see:
\begin{equation}
\eta'(t)\le C_{1}\eta(t)+C_{2}\xi(t).
\end{equation}
Thus, by Gronwall's inequality:
\begin{equation}
\eta(t)\le e^{C_{1}t}\left(\eta(0)+C_{2}\int_{0}^{t}\xi(\tau)\dif\tau\right).
\end{equation}
By the definition, $\eta(0)\le\norm{g}_{L^{2}(U)}^{2}$, i.e.
\begin{equation}
\label{eq:estimate_um}
\max_{0\le t\le T}\norm{\mathbf{u}_{m}}_{H_{0}^{1}(U)}^{2}\le C\left(\norm{g}_{L^{2}(U)}^{2}+\norm{\mathbf{f}}_{L^{2}(0,T;L^{2}(U))}^{2}\right).
\end{equation}
Then, consider $\norm{\mathbf{u}_{m}}_{L^{2}(0,T;H_{0}^{1}(U))}^{2}$, by equation \eqref{eq:estimate_um}, we can see:
\begin{equation}
\begin{aligned}
\norm{\mathbf{u}_{m}}_{L^{2}(0,T;H_{0}^{1}(U))}^{2}&=\int_{0}^{T}\norm{\mathbf{u}_{m}(t)}_{H_{0}^{1}(U)}^{2}\dif t\\
&\le \int_{0}^{T}C_{1}\norm{\mathbf{f}(t)}_{L^{2}(U)}^{2}+C_{2}\norm{\mathbf{u}_{m}(t)}_{L^{2}(U)}^{2}+C_{3}\frac{\dif \norm{\mathbf{u}_{m}}_{L^{2}(U)}^{2}}{\dif t}\dif t\\
&\le C\left(\norm{g}_{L^{2}(U)}^{2}+\norm{\mathbf{f}}_{L^{2}(0,T;L^{2}(U))}^{2}\right).
\end{aligned}
\end{equation}
Finally, fix any $v\in H_{0}^{1}(U)$ with $\norm{v}_{H_{0}^{1}(U)}\le 1$ and write $v=v^{1}+v^{2}$, where $v^{1}\in\text{span}\{w_{k}\}_{k=1}^{m}$ and $(v^{2},w_{k})=0$. Since $\{w_{k}\}_{k=0}^{\infty}$ are orthogonal in $H_{0}^{1}(U)$, and $\norm{v^{1}}_{H_{0}^{1}(U)}\le\norm{v}_{H_{0}^{1}(U)}\le 1$. By \eqref{eq:main_function}, for a.e. $0\le t\le T$, we have:
\begin{equation}
(\mathbf{u}'_{m},v^{1})+B[\mathbf{u}_{m},v^{1};t]=(\mathbf{f},v^{1}).
\end{equation}
Then:
\begin{equation}
\innerprod{\mathbf{u}'_{m}}{v}=(\mathbf{u}'_{m},v^{1})=\innerprod{\mathbf{f}}{v^{1}}-B[\mathbf{u}_{m},v^{1};t].
\end{equation}
Consequently:
\begin{equation}
\norm{\mathbf{u}'_{m}}_{H^{-1}(U)}\le C\left(\norm{f}_{L^{2}(U)}+\norm{\mathbf{u}_{m}}_{H_{0}^{1}(U)}\right),
\end{equation}
and therefore:
\begin{equation}
\int_{0}^{T}\norm{\mathbf{u}'_{m}}_{H^{-1}(U)}^{2}\le C\left(\norm{g}_{L^{2}(U)}^{2}+\norm{\mathbf{f}}_{L^{2}(0,T;L^{2}(U))}^{2}\right).
\end{equation}
Q.E.D.
\end{proof}