-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathas2_data_setup.m
255 lines (192 loc) · 6.92 KB
/
as2_data_setup.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
function imdb = data_setup_msr_3d_skeleton(folder)
imdb = struct();
highArmWave = dir([folder '/HighArmWave/*.png']);
handCatch = dir([folder '/HandCatch/*.png']);
drawX = dir([folder '/DrawX/*.png']);
drawCircle = dir([folder '/DrawCircle/*.png']);
drawTick = dir([folder '/DrawTick/*.png']);
twoHandWave = dir([folder '/TwoHandWave/*.png']);
forwardKick = dir([folder '/ForwardKick/*.png']);
sideBoxing = dir([folder '/SideBoxing/*.png']);
H = 32;
W = 32;
CH = 3;
NhighArmWave = numel(highArmWave);
NhandCatch = numel(handCatch);
NdrawX = numel(drawX);
NdrawCircle = numel(drawCircle);
NdrawTick = numel(drawTick);
NtwoHandWave = numel(twoHandWave);
NforwardKick = numel(forwardKick);
NsideBoxing = numel(sideBoxing);
N = NhighArmWave + NhandCatch + NdrawX;
N = N + NdrawCircle + NdrawTick + NtwoHandWave;
N = N + NforwardKick + NsideBoxing;
meta.sets = {'train', 'test'};
meta.classes = {'HighArmWave', 'HandCatch', 'DrawX',...
'DrawCircle', 'DrawTick', 'TwoHandWave', ...
'ForwardKick', 'SideBoxing',...
};
% images go here
images.data = zeros(H, W, CH, N, 'single');
% this will contain the mean of the training set
images.data_mean = zeros(H, W, CH, 'single');
% a label per image
images.labels = zeros(1, N);
% vector indicating to which set an image belong, i.e.,
% training, validation, etc.
images.set = zeros(1, N);
numImgsTrain = 0;
% Loading the 1st category data.
for i=1:numel(highArmWave)
fprintf('Loading %d out of %d images from HighArmWave folder \r\n',...
i, length(highArmWave));
im = single(imread([folder '/HighArmWave/', highArmWave(i).name]));
im = imresize(im,[32 32]);
images.data(:,:,:,i) = im;
images.labels(i) = 1;
% Selecting the set (train/val) randomly.
if(randi(10, 1) > 5)
images.set(i) = 1;
images.data_mean = images.data_mean + im;
numImgsTrain = numImgsTrain + 1;
else
images.set(i) = 2;
end
end
num_cur = NhighArmWave;
% Loading the 2nd category data.
for i=1:numel(handCatch)
fprintf('Loading %d out of %d images from HandCatch folder \r\n',...
i, length(handCatch));
im = single(imread([folder '/HandCatch/', handCatch(i).name]));
im = imresize(im,[32 32]);
images.data(:,:,:,num_cur+i) = im;
images.labels(num_cur+i) = 2;
% Selectng the set (train/val) randomly.
if(randi(10, 1) > 5)
images.set(num_cur+i) = 1;
images.data_mean = images.data_mean + im;
numImgsTrain = numImgsTrain + 1;
else
images.set(num_cur+i) = 2;
end
end
num_cur = num_cur + NhandCatch;
% Loading the 3rd category data.
for i=1:numel(drawX)
fprintf('Loading %d out of %d images from DrawX folder \r\n',...
i, length(drawX));
im = single(imread([folder '/DrawX/', drawX(i).name]));
im = imresize(im,[32 32]);
images.data(:,:,:,num_cur+i) = im;
images.labels(num_cur+i) = 3;
% Select the set (train/val) randomly.
if(randi(10, 1) > 5)
images.set(num_cur+i) = 1;
images.data_mean = images.data_mean + im;
numImgsTrain = numImgsTrain + 1;
else
images.set(num_cur+i) = 2;
end
end
num_cur = num_cur + NdrawX;
% Loading the 4th category data.
for i=1:numel(drawCircle)
fprintf('Loading %d out of %d images from DrawCircle folder \r\n',...
i, length(drawCircle));
im = single(imread([folder '/DrawCircle/', drawCircle(i).name]));
im = imresize(im,[32 32]);
images.data(:,:,:, num_cur+i) = im;
images.labels(num_cur+i) = 4;
% Select the set (train/val) randomly.
if(randi(10, 1) > 5)
images.set(num_cur+i) = 1;
images.data_mean = images.data_mean + im;
numImgsTrain = numImgsTrain + 1;
else
images.set(num_cur+i) = 2;
end
end
num_cur = num_cur + NdrawCircle;
% Loading the 5th category data.
for i=1:numel(drawTick)
fprintf('Loading %d out of %d images from DrawTick folder \r\n',...
i, length(drawTick));
im = single(imread([folder '/DrawTick/', drawTick(i).name]));
im = imresize(im,[32 32]);
images.data(:,:,:,num_cur+i) = im;
images.labels(num_cur+i) = 5;
% Selecting the set (train/val) randomly.
if(randi(10, 1) > 5)
images.set(num_cur+i) = 1;
images.data_mean = images.data_mean + im;
numImgsTrain = numImgsTrain + 1;
else
images.set(num_cur+i) = 2;
end
end
num_cur = num_cur + NdrawTick;
% Loading the 6th category data.
for i=1:numel(twoHandWave)
fprintf('Loading %d out of %d images from TwoHandWave folder \r\n',...
i, length(twoHandWave));
im = single(imread([folder '/TwoHandWave/', twoHandWave(i).name]));
im = imresize(im,[32 32]);
images.data(:,:,:, num_cur+i) = im;
images.labels(num_cur+i) = 6;
% Selecting the set (train/val) randomly.
if(randi(10, 1) > 5)
images.set(num_cur+i) = 1;
images.data_mean = images.data_mean + im;
numImgsTrain = numImgsTrain + 1;
else
images.set(num_cur+i) = 2;
end
end
num_cur = num_cur + NtwoHandWave;
% Loading the 7th category data.
for i=1:numel(forwardKick)
fprintf('Loading %d out of %d images from ForwardKick folder \r\n',...
i, length(forwardKick));
im = single(imread([folder '/ForwardKick/', forwardKick(i).name]));
im = imresize(im,[32 32]);
images.data(:,:,:, num_cur+i) = im;
images.labels(num_cur+i) = 7;
% Selecting the set (train/val) randomly.
if(randi(10, 1) > 5)
images.set(num_cur+i) = 1;
images.data_mean = images.data_mean + im;
numImgsTrain = numImgsTrain + 1;
else
images.set(num_cur+i) = 2;
end
end
num_cur = num_cur + NforwardKick;
% Loading the 8th category data.
for i=1:numel(sideBoxing)
fprintf('Loading %d out of %d images from SideBoxing folder \r\n',...
i, length(sideBoxing));
im = single(imread([folder '/SideBoxing/', sideBoxing(i).name]));
im = imresize(im,[32 32]);
images.data(:,:,:, num_cur+i) = im;
images.labels(num_cur+i) = 8;
% Selecting the set (train/val) randomly.
if(randi(10, 1) > 5)
images.set(num_cur+i) = 1;
images.data_mean = images.data_mean + im;
numImgsTrain = numImgsTrain + 1;
else
images.set(num_cur+i) = 2;
end
end
% Computing the mean.
images.data_mean = images.data_mean ./ numImgsTrain;
% now let's add some randomization.
indices = randperm(N);
images.data(:,:,:,:) = images.data(:,:,:,indices);
images.labels(:) = images.labels(indices);
images.set(:) = images.set(indices);
imdb.meta = meta;
imdb.images = images;
end