-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAlignment_Test.R
349 lines (293 loc) · 10.4 KB
/
Alignment_Test.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
# measurement alignment test with Fisher & Karl (2019)
##### 0. Package importing and dataset loading
# package load
library(lavaan)
library(sirt)
library(foreach)
library(parallel)
library(doParallel)
library(psych)
library(MASS)
# set some constants
fits <- c('rmsea.scaled','srmr','cfi.scaled')
var.help <- c('help1','help2','help3','help4','help5','help6','help7')
# data load
data <- read.csv('example.csv')
DATA <- data
# how many countries?
table(data$country)
# eight countries
# sort by countries
data <- data[order(data$country),]
# extract country names
countries <- labels(table(data$country))[[1]]
# number of country groups to be examined
n.include <- length (countries)
##### 1. MG-CFA
#####
# first, let's start with MGCFA
# let's focus on help for now for alignment
cfa_model.help<- '
help =~ help1 + help2 + help3 + help4 + help5 + help6 + help7'
# invariance test
# configural invariance
# use WLSMV (ordinal scale)
fit.help.configural <- cfa (cfa_model.help, data, group = 'country',
estimator='WLSMV')
fitMeasures(fit.help.configural)[fits]
#rmsea.scaled srmr cfi.scaled
#0.06855601 0.03272451 0.95127722
# metric invariance
fit.help.metric <- cfa (cfa_model.help, data, group = 'country',
estimator='WLSMV', group.equal='loadings')
fitMeasures(fit.help.metric)[fits]
#rmsea.scaled srmr cfi.scaled
#0.04358127 0.03944788 0.97292655
# changes
fitMeasures(fit.help.metric)[fits]-fitMeasures(fit.help.configural)[fits]
# -0.024974735 0.006723362 0.021649334
# acceptable
# scalar invariance
fit.help.scalar <- cfa (cfa_model.help, data, group = 'country',
estimator='WLSMV', group.equal=c('loadings','intercepts'))
fitMeasures(fit.help.scalar)[fits]
#rmsea.scaled srmr cfi.scaled
#0.05909330 0.04892335 0.93664870
# changes
fitMeasures(fit.help.scalar)[fits]-fitMeasures(fit.help.metric)[fits]
# 0.015512027 0.009475471 -0.036277857
# both rmsea and cfi changes exceeded threshold. alignment necessary
# residual invariance
fit.help.residual <- cfa (cfa_model.help, data, group = 'country',
estimator='WLSMV', group.equal=c('loadings','intercepts',
'residuals'))
fitMeasures(fit.help.residual)[fits]
#rmsea.scaled srmr cfi.scaled
#0.06703950 0.07359188 0.89808207
fitMeasures(fit.help.residual)[fits]-fitMeasures(fit.help.scalar)[fits]
##### 2. Measurement Alignment
#####
# Then, let's perform measurement alignment
# help
# extract cfa parameters
par.help <- invariance_alignment_cfa_config(dat = data[,var.help],
group = data$country)
# do alignment
# following the suggested threshold values in Fisher & Karl (2019)
mod.help <- invariance.alignment(lambda = par.help$lambda, nu =
par.help$nu, align.scale = c(0.2, 0.4), align.pow = c(0.25, 0.25))
# test performance
mod.help$es.invariance['R2',]
# loadings intercepts
# 0.9979870 0.9996975
# 99% absolbed -> great result
# Alexander suggested used of 2 for loss function. So, compare the result
mod.help.loss <- invariance.alignment(lambda = par.help$lambda, nu =
par.help$nu, align.scale = c(0.2, 0.4), align.pow = c(2, 2))
# test performance
mod.help.loss$es.invariance['R2',]
# loadings intercepts
# 0.9981392 0.9997081
# R^2 statistics altered
# item-level test
cmod <- invariance_alignment_constraints(mod.help, lambda_parm_tol = .4, nu_parm_tol = .2)
summary(cmod)
# lambda noninvariance item = 0%
# nu noninvariance item = 5.4%
# acceptable
##### 3. Monte Carlo Simulations
#####
# Monte Carlo simulation
# define function for simulation/iteration
# simulation function
# times: how many time to repeat the same test?
# n: n for each test (e.g., 100, 200, 500)
# data: data to be tested
# model: CFA model
# lv: name of the latent variable e.g., help
# n.include: number of groups. in this case, 8 (countries)
# gruops: names of groups to be tested. e.g., data$country
# items: items (variable names) to be tested. an array
# par: parameters for cfa (created by invariance_alignment_cfa_config)
# seed: random seed
simulation <- function(n,data,model,lv,
n.include,groups,items,par,seed=1){
# create a matrix to return results
# correlation and R2s
cor.mean <- 0
cor.var <- 0
R2.loading <- 0
R2.intercept <- 0
# begin simulation
set.seed(seed)
G <- n.include # number of groups
I <- length(items) # number of items
# lambda, nu, and error_var to be created for simulation
err_var.cle <- matrix(1, nrow=G,ncol=I)
# Create stimulated data
# enter group mu and sigma
data$Y <- rowMeans(data[,items])
mu<-scale(aggregate(x=data$Y,
by = list(groups),
FUN=mean, na.rm=T)[,2])[,1]
sigma <- (aggregate(x=data$Y,
by = list(groups),
FUN=sd, na.rm=T)[,2])
N <- rep(n,G)
# do simulation for data creation
dat <- invariance_alignment_simulate(
par$nu,par$lambda,err_var.cle,mu,sigma,N
)
# do CFA. parameter extraction for alignment
par.simul <- invariance_alignment_cfa_config(dat = dat[,items],
group = dat$group,
estimator = 'WLSMV')
#cfa.test <-cfa(model,dat,estimator='WLSMV',group='group')
#ipars <- parameterEstimates(cfa.test)
# then, do alignment
mod1.simul <- invariance.alignment(lambda = par.simul$lambda, nu =
par.simul$nu, align.scale = c(0.2, 0.4), align.pow = c(0.25, 0.25),
optimizer='nlminb')
# do CFA. scalar invariance model for further calculation
cfa.simul <- cfa(model,dat,estimator='WLSMV',group='group',
group.equal=c('loadings','intercepts'),meanstructure=T)
# get group mean
params.simul <- parameterEstimates(cfa.simul)
alpha.simul <- params.simul[(params.simul$op=='~1')&(params.simul$lhs==lv),'est']
# group mean correlation (Muthen 2018)
correlation <- corr.test(alpha.simul,mod1.simul$pars$alpha0,method='spearman')$r
# get group intercept
psi.simul <- params.simul[(params.simul$op=='~~')&(params.simul$lhs==lv),'est']
correlation.psi <- corr.test(psi.simul,mod1.simul$pars$psi0,method='spearman')$r
cor.mean <- correlation
cor.var <- correlation.psi
# R2. The extent to which non-invariances in loadings and intercepts were absorbed?
# ideally >= 75-80%
R2.loading <- mod1.simul$es.invariance['R2',1]
R2.intercept <- mod1.simul$es.invariance['R2',2]
# make matrix
to.return <-cbind(cor.mean,cor.var,R2.loading,R2.intercept)
to.return <- data.matrix(to.return)
return(to.return)
}
# use five cores
# and repeat each test 500 times
cores <- 5
times <- 500
# create threads to distribute tasks
cl <- parallel::makeCluster(cores,type='FORK')
doParallel::registerDoParallel(cl)
# start simulation with n = 100
# time measure as well
#start_100 <-Sys.time()
n <- 100
now <- foreach (i = seq(1,times)) %dopar%{
# do simulation
#simulation <- function(n,data,model,lv,
# n.include,groups,items,par,seed=1)
simulation(n ,data,cfa_model.help,'help',
n.include, data$country,var.help,par.help,i)
# message(sprintf('%d',i))
}
#end_100<-Sys.time()
#elapsed_100 <- end_100 - start_100
# merge result
for (i in 1:times){
if (i == 1){
simulate_100 <- now[[1]]
}else{
simulate_100 <- rbind(simulate_100,now[[i]])
}
}
# save n = 100
write.csv(data.frame(simulate_100),file='simulate_100.csv',row.names = FALSE)
# results for n = 100
print(describe(simulate_100),digits=4)
# do the sam ewith n = 200
start_200 <-Sys.time()
now <- foreach (i = seq(1,times)) %dopar%{
# do simulation
#simulation <- function(n,data,model,lv,
# n.include,groups,items,par,seed=1)
simulation(200,data,cfa_model.help,'help',
n.include, data$country,var.help,par.help,i)
# message(sprintf('%d',i))
}
end_200<-Sys.time()
elapsed_200 <- end_200 - start_200
# merge result
for (i in 1:times){
if (i == 1){
simulate_200 <- now[[1]]
}else{
simulate_200 <- rbind(simulate_200,now[[i]])
}
}
# save n = 200
write.csv(data.frame(simulate_200),file='simulate_200.csv',row.names = FALSE)
print(describe(simulate_200),digits=4)
# then n= 500
start_500 <-Sys.time()
now <- foreach (i = seq(1,times)) %dopar%{
# do simulation
#simulation <- function(n,data,model,lv,
# n.include,groups,items,par,seed=1)
simulation(500,data,cfa_model.help,'help',
n.include, data$country,var.help,par.help,i)
# message(sprintf('%d',i))
}
end_500<-Sys.time()
elapsed_500 <- end_500 - start_500
# merge result
for (i in 1:times){
if (i == 1){
simulate_500 <- now[[1]]
}else{
simulate_500 <- rbind(simulate_500,now[[i]])
}
}
# save n = 500
write.csv(data.frame(simulate_500),file='simulate_500.csv',row.names = FALSE)
print(describe(simulate_500),digits=4)
# terminate multiprocessing
parallel::stopCluster(cl)
# in all cases, cor ≥ 95%. Good
##### 4. Factor Score Calculation
#####
# calculate factor scores based on aligned loadings and intercepts
# function to implement factor score calculation
# from adjusted lambda and nu
# basically, x = lambda*X + nu
# so, X = inv (lambda) (x - nu)
aligned.factor.scores <- function(lambda, nu, X){
#calculate inverse matrix of lambda
lambda1 <- ginv(lambda)
# y - nu
y_nu <- X - nu
F <- lambda1 %*% t(as.matrix(y_nu))
}
# calculate score
# do calculation for each country, and then merge
for (i in 1:(n.include)){
if (i == 1){
# first country
# create new matrix
data.aligned <- data[data$country==countries[i],]
# calculate factor score
Fs <- aligned.factor.scores(mod.help$lambda.aligned[i,],
mod.help$nu.aligned[i,],
data[data$country==countries[i],var.help])
data.aligned$help <- t(Fs)
}else{
# other than the first country
# append
current <- data[data$country==countries[i],]
Fs <- aligned.factor.scores(mod.help$lambda.aligned[i,],
mod.help$nu.aligned[i,],
data[data$country==countries[i],var.help])
current$help <- t(Fs)
data.aligned <- rbind(data.aligned,current)
}
}
# save aligned result
write.csv(data.frame(data.aligned),file='aligned.csv',row.names = FALSE)