-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCode Example.R
190 lines (137 loc) · 7.22 KB
/
Code Example.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#Installing all relevant packages.
install.packages(c("tidyverse","lavaan","psych", "semTools","lordif","sirt", "devtools", "car"))
#Installing the prototype of the ccpsyc package
devtools::install_github("Jo-Karl/ccpsyc")
# Loading Necessary Libraries ---------------------------------------------
## Should you get an error that a certain library is not available install it
## via install.packages(), i.e install.packages("tidyverse").
## Spaces and linebreaks do not matter in R in most cases.
library(tidyverse)
library(lavaan)
library(psych)
library(semTools)
library(lordif)
library(sirt)
library(ccpsyc)
# Loading Data ------------------------------------------------------------
## Either set the working directory to the folder with your data or use R
## studio projects.
overall <- read.csv("example.csv")
example <- overall %>%
filter(., country %in% c("BRA", "NZ"))
# Multi-Group Confirmatory CFA --------------------------------------------
## In the next step we define the model we want to test across cultures
## latent variables are created using =~ .
cfa_model<- '
help =~ help1 + help2 + help3 + help4 + help5 + help6 + help7
voice =~ voice1 + voice2 + voice3 + voice4 + voice5
'
## Fitting an overall CFA
fit_cfa <- cfa(cfa_model, data = example)
## Fitting a CFA seperated by country
fit_cfa_country <- cfa(cfa_model, data = example, group = "country")
## Fit inidices of the CFA
summary(fit_cfa_country, fit.measures = TRUE,
standardized = TRUE, rsquare = TRUE)
# Testing Measurement invariance using an omnibus test. -------------------
measurementInvariance(model = cfa_model, data = example, group = "country")
## The measurementInvariance function of the SEMtools package has been updated
## and might become deprecated in the future.
## We provide a legacy version of this function (invariance_semtools)
## in the ccpsyc package. The usage is identical
## to the measurementInvariance function.
invariance_semtools(model = cfa_model, data = example, group = "country")
## Obtaining additional fit measures. It is important to note that all
## models are fitted using an MLM estimation for multi-variate non-normal
## data.
equival(cfa_model, dat = example, group = "country")
## Getting Modification indices for the specified model
mi <- modificationIndices(fit_cfa, minimum.value = 10, sort. = T)
# Testing Partial Measurement Invariance ----------------------------------
## The commnand below fits a metrically constrained model.
metric_test <-cfa(cfa_model, data = example,
group = "country", group.equal = c("loadings"))
## Requesting modificaiton indices for the metrically constrained model
mi_metric <- modificationIndices(metric_test, minimum.value = 10, sort. = T)
## Testing which loadings could be released between groups
lavTestScore.clean(metric_test)
fit_partial <
- cfa(cfa_model, data = example, group = "country", group.equal = c("loadings"), group.partial = c("help =~ help3 "))
# Dmacs -------------------------------------------------------------------
## It is important to note that currently Dmacs are only supported for single
## factor models.
help_model <- 'help =~ help1 + help2 + help3 + help4 + help5 + help6 + help7'
help_cfa <- cfa(help_model, data = example, group = "country")
dMACS(help_cfa, group1 = "NZ", group2 = "BRA")
# Exploratory Strucutural Equation Modelling ------------------------------
## Creating a factor rotated object (exlduing the country column)
beh_efa <- fa(example[-1], nfact = 2, rotate = "geominQ", fm = "ml")
beh_loadmat <- zapsmall(matrix(round(beh_efa$loadings, 2), nrow = 12, ncol = 2))
rownames(beh_loadmat) <- colnames(example[-1])
new_model <- vector()
for (i in 1:2) {
new_model[i] <- paste0("F",i,"=~ ", paste0(c(beh_loadmat[,i]), " * ", names(beh_loadmat[,1]), collapse = " + "))
}
## The subsequent step fits a classic CFA on the exploratory model/
beh_cfa_esem <- cfa(new_model, data = example, estimator = "ML")
fitmeasures(beh_cfa_esem, c("cfi", "tli", "rmsea", "srmr"))
## Next we fit a configural model for each country
fitmeasures(cfa(
model = new_model,
data = example,
group = "country",
estimator = "ML"),
c("cfi","tli","rmsea","srmr")
)
## Metric and Scalar Models can be fitted as for a normal CFA
fitmeasures(cfa(
model = new_model,
data = example,
group = "country",
estimator = "ML",
group.equal = c("loadings", "intercepts")),
c("cfi","tli","rmsea","srmr")
)
# Approximate Invariance Using Alignement ----------------------------------
## Below is example code to test the alignement procedure in R.
par <- invariance_alignment_cfa_config(dat = example[paste0("help", 1:7)], group = example$country)
mod1 <- invariance.alignment(lambda = par$lambda, nu = par$nu, align.scale = c(.2, .4), align.pow = c(.25, .25))
mod1$es.invariance["R2",]
cmod1 <- invariance_alignment_constraints(mod1, lambda_parm_tol = .4, nu_parm_tol = .2)
summary(cmod1)
# Logistic Regression to test for DIF in R --------------------------------
country <- car::recode(example$country, "'NZ' = 1; 'BRA' = 0")
response_data <- example[paste0("help", 1:7)]
countryDIF <- lordif(resp.data = response_data, group = country, criterion = "Chisqr",
alpha = 0.001, minCell = 5)
countryDIF_r2_change <- lordif(response_data, country,criterion = "R2", R2.change = 0.01, minCell = 5)
countryDIF_MC <- montecarlo(countryDIF, alpha = 0.001, nr=1000)
# EFA and PCA -------------------------------------------------------------
## The following section provides example code for an EFA or PCA with
## Procrustes Rotation.
nz_example <- filter(example, country == "NZ")
br_example <- filter(example, country == "BRA")
nz_fa <- fa(nz_example[,-1], nfactors = 2, rotate = "varimax")
br_fa <- fa(br_example[,-1], nfactors = 2, rotate = "varimax")
prost(nz_fa$loadings, br_fa$loadings, rotated = T)
# EFA/ PCA for multiple Groups --------------------------------------------
## The steps below outline the preparation of a multi-country dataset
## for a Procrustes analysis.
split_list <- split(overall, overall$country)
variable_list <- lapply(split_list, function(x){x[,-1]})
output_pca <- lapply(variable_list, function(x){principal(x, rotate = "varimax", nfactors = 2)})
## Creating an ideal matrix 1's represent that the item is loading on the factor
## 0 is indicating that the item is not loading on the factor.
ideal <- matrix(c(1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0,1),
byrow = TRUE, ncol = 2)
## Subsequently each countries loading matrix can be rotated to the ideal matrix
PCA <- lapply(variable_list, function(x){principal(x, rotate = "varimax", nfactors = 2)})
lapply(PCA, function(x){prost(x$loadings, ideal)})
# EFA/PCA Procrustes against a Pan-Cultural Matrix ------------------------
overall$country_numeric <- as.numeric(factor(overall$country))
pooled_correlation <- psych::statsBy(data = overall[-1], group = "country_numeric",
cors = TRUE, cor = "cor", method ="pearson")
pooled_pca <- psych::principal(r = pooled_correlation$pooled, nfactors = 2,
rotate = "varimax")
output3_pca <- lapply(variable_list, function(x){principal(x, rotate = "varimax", nfactors = 2)})
lapply(output3_pca, function(x){prost(x$loadings, pooled_pca$loadings)})