|
| 1 | +# measurement alignment test with Fisher & Karl (2019) |
| 2 | + |
| 3 | +# package load |
| 4 | +library(lavaan) |
| 5 | +library(sirt) |
| 6 | +library(foreach) |
| 7 | +library(parallel) |
| 8 | +library(doParallel) |
| 9 | +library(psych) |
| 10 | +library(MASS) |
| 11 | + |
| 12 | +# set some constants |
| 13 | +fits <- c('rmsea.scaled','srmr','cfi.scaled') |
| 14 | +var.help <- c('help1','help2','help3','help4','help5','help6','help7') |
| 15 | + |
| 16 | +# data load |
| 17 | +data <- read.csv('example.csv') |
| 18 | +DATA <- data |
| 19 | + |
| 20 | +# how many countries? |
| 21 | +table(data$country) |
| 22 | +# eight countries |
| 23 | + |
| 24 | +# sort by countries |
| 25 | +data <- data[order(data$country),] |
| 26 | + |
| 27 | +# extract country names |
| 28 | +countries <- labels(table(data$country))[[1]] |
| 29 | + |
| 30 | +##### |
| 31 | +# first, let's start with MGCFA |
| 32 | +# let's focus on help for now for alignment |
| 33 | +cfa_model.help<- ' |
| 34 | + help =~ help1 + help2 + help3 + help4 + help5 + help6 + help7' |
| 35 | + |
| 36 | +# invariance test |
| 37 | +# configural invariance |
| 38 | +# use WLSMV (ordinal scale) |
| 39 | +fit.help.configural <- cfa (cfa_model.help, data, group = 'country', |
| 40 | + estimator='WLSMV') |
| 41 | +fitMeasures(fit.help.configural)[fits] |
| 42 | +#rmsea.scaled srmr cfi.scaled |
| 43 | +#0.06855601 0.03272451 0.95127722 |
| 44 | + |
| 45 | +# metric invariance |
| 46 | +fit.help.metric <- cfa (cfa_model.help, data, group = 'country', |
| 47 | + estimator='WLSMV', group.equal='loadings') |
| 48 | +fitMeasures(fit.help.metric)[fits] |
| 49 | +#rmsea.scaled srmr cfi.scaled |
| 50 | +#0.04358127 0.03944788 0.97292655 |
| 51 | +# changes |
| 52 | +fitMeasures(fit.help.metric)[fits]-fitMeasures(fit.help.configural)[fits] |
| 53 | +# -0.024974735 0.006723362 0.021649334 |
| 54 | +# acceptable |
| 55 | + |
| 56 | +# scalar invariance |
| 57 | +fit.help.scalar <- cfa (cfa_model.help, data, group = 'country', |
| 58 | + estimator='WLSMV', group.equal=c('loadings','intercepts')) |
| 59 | +fitMeasures(fit.help.scalar)[fits] |
| 60 | +#rmsea.scaled srmr cfi.scaled |
| 61 | +#0.05909330 0.04892335 0.93664870 |
| 62 | +# changes |
| 63 | +fitMeasures(fit.help.scalar)[fits]-fitMeasures(fit.help.metric)[fits] |
| 64 | +# 0.015512027 0.009475471 -0.036277857 |
| 65 | +# both rmsea and cfi changes exceeded threshold. alignment necessary |
| 66 | + |
| 67 | +##### |
| 68 | +# Then, let's perform measurement alignment |
| 69 | + |
| 70 | +# help |
| 71 | +# extract cfa parameters |
| 72 | +par.help <- invariance_alignment_cfa_config(dat = data[,var.help], |
| 73 | + group = data$country) |
| 74 | +# do alignment |
| 75 | +# following the suggested threshold values in Fisher & Karl (2019) |
| 76 | +mod.help <- invariance.alignment(lambda = par.help$lambda, nu = |
| 77 | + par.help$nu, align.scale = c(0.2, 0.4), align.pow = c(0.25, 0.25)) |
| 78 | + |
| 79 | +# test performance |
| 80 | +mod.help$es.invariance['R2',] |
| 81 | +# loadings intercepts |
| 82 | +# 0.9979870 0.9996975 |
| 83 | +# 99% absolbed -> great result |
| 84 | + |
| 85 | +# item-level test |
| 86 | +cmod <- invariance_alignment_constraints(mod.help, lambda_parm_tol = .4, nu_parm_tol = .2) |
| 87 | +summary(cmod) |
| 88 | +# lambda noninvariance item = 0% |
| 89 | +# nu noninvariance item = 5.4% |
| 90 | +# acceptable |
| 91 | + |
| 92 | +##### |
| 93 | +# Monte Carlo simulation |
| 94 | + |
| 95 | +# define function for simulation/iteration |
| 96 | +# simulation function |
| 97 | +# times: how many time to repeat the same test? |
| 98 | +# n: n for each test (e.g., 100, 200, 500) |
| 99 | +# data: data to be tested |
| 100 | +# model: CFA model |
| 101 | +# lv: name of the latent variable e.g., help |
| 102 | +# n.include: number of groups. in this case, 8 (countries) |
| 103 | +# gruops: names of groups to be tested. e.g., data$country |
| 104 | +# items: items (variable names) to be tested. an array |
| 105 | +# par: parameters for cfa (created by invariance_alignment_cfa_config) |
| 106 | +# seed: random seed |
| 107 | +simulation <- function(n,data,model,lv, |
| 108 | + n.include,groups,items,par,seed=1){ |
| 109 | + |
| 110 | + # create a matrix to return results |
| 111 | + # correlation and R2s |
| 112 | + cor.mean <- 0 |
| 113 | + cor.var <- 0 |
| 114 | + R2.loading <- 0 |
| 115 | + R2.intercept <- 0 |
| 116 | + |
| 117 | + # begin simulation |
| 118 | + set.seed(seed) |
| 119 | + G <- n.include # number of groups |
| 120 | + I <- length(items) # number of items |
| 121 | + |
| 122 | + # lambda, nu, and error_var to be created for simulation |
| 123 | + err_var.cle <- matrix(1, nrow=G,ncol=I) |
| 124 | + |
| 125 | + # Create stimulated data |
| 126 | + # enter group mu and sigma |
| 127 | + data$Y <- rowMeans(data[,items]) |
| 128 | + mu<-scale(aggregate(x=data$Y, |
| 129 | + by = list(groups), |
| 130 | + FUN=mean, na.rm=T)[,2])[,1] |
| 131 | + sigma <- (aggregate(x=data$Y, |
| 132 | + by = list(groups), |
| 133 | + FUN=sd, na.rm=T)[,2]) |
| 134 | + N <- rep(n,G) |
| 135 | + |
| 136 | + # do simulation for data creation |
| 137 | + dat <- invariance_alignment_simulate( |
| 138 | + par$nu,par$lambda,err_var.cle,mu,sigma,N |
| 139 | + ) |
| 140 | + |
| 141 | + # do CFA. parameter extraction for alignment |
| 142 | + par.simul <- invariance_alignment_cfa_config(dat = dat[,items], |
| 143 | + group = dat$group, |
| 144 | + estimator = 'WLSMV') |
| 145 | + |
| 146 | + |
| 147 | + #cfa.test <-cfa(model,dat,estimator='WLSMV',group='group') |
| 148 | + #ipars <- parameterEstimates(cfa.test) |
| 149 | + |
| 150 | + # then, do alignment |
| 151 | + mod1.simul <- invariance.alignment(lambda = par.simul$lambda, nu = |
| 152 | + par.simul$nu, align.scale = c(0.2, 0.4), align.pow = c(0.25, 0.25), |
| 153 | + optimizer='nlminb') |
| 154 | + |
| 155 | + # do CFA. scalar invariance model for further calculation |
| 156 | + cfa.simul <- cfa(model,dat,estimator='WLSMV',group='group', |
| 157 | + group.equal=c('loadings','intercepts'),meanstructure=T) |
| 158 | + |
| 159 | + # get group mean |
| 160 | + params.simul <- parameterEstimates(cfa.simul) |
| 161 | + alpha.simul <- params.simul[(params.simul$op=='~1')&(params.simul$lhs==lv),'est'] |
| 162 | + |
| 163 | + # group mean correlation (Muthen 2018) |
| 164 | + correlation <- corr.test(alpha.simul,mod1.simul$pars$alpha0,method='spearman')$r |
| 165 | + |
| 166 | + # get group intercept |
| 167 | + psi.simul <- params.simul[(params.simul$op=='~~')&(params.simul$lhs==lv),'est'] |
| 168 | + correlation.psi <- corr.test(psi.simul,mod1.simul$pars$psi0,method='spearman')$r |
| 169 | + |
| 170 | + cor.mean <- correlation |
| 171 | + cor.var <- correlation.psi |
| 172 | + |
| 173 | + # R2. The extent to which non-invariances in loadings and intercepts were absorbed? |
| 174 | + # ideally >= 75-80% |
| 175 | + R2.loading <- mod1.simul$es.invariance['R2',1] |
| 176 | + R2.intercept <- mod1.simul$es.invariance['R2',2] |
| 177 | + |
| 178 | + # make matrix |
| 179 | + to.return <-cbind(cor.mean,cor.var,R2.loading,R2.intercept) |
| 180 | + to.return <- data.matrix(to.return) |
| 181 | + |
| 182 | + return(to.return) |
| 183 | + |
| 184 | +} |
| 185 | + |
| 186 | + |
| 187 | + |
| 188 | +# use five cores |
| 189 | +# and repeat each test 500 times |
| 190 | +cores <- 5 |
| 191 | +times <- 500 |
| 192 | + |
| 193 | +# create threads to distribute tasks |
| 194 | +cl <- parallel::makeCluster(cores,type='FORK') |
| 195 | +doParallel::registerDoParallel(cl) |
| 196 | + |
| 197 | +# start simulation with n = 100 |
| 198 | +# time measure as well |
| 199 | + |
| 200 | +start_100 <-Sys.time() |
| 201 | +now <- foreach (i = seq(1,times)) %dopar%{ |
| 202 | + # do simulation |
| 203 | + #simulation <- function(n,data,model,lv, |
| 204 | + # n.include,groups,items,par,seed=1) |
| 205 | + simulation(100,data,cfa_model.help,'help', |
| 206 | + n.include, data$country,var.help,par.help,i) |
| 207 | + # message(sprintf('%d',i)) |
| 208 | +} |
| 209 | +end_100<-Sys.time() |
| 210 | +elapsed_100 <- end_100 - start_100 |
| 211 | +# merge result |
| 212 | +for (i in 1:times){ |
| 213 | + if (i == 1){ |
| 214 | + simulate_100 <- now[[1]] |
| 215 | + }else{ |
| 216 | + simulate_100 <- rbind(simulate_100,now[[i]]) |
| 217 | + } |
| 218 | +} |
| 219 | +# save n = 100 |
| 220 | +write.csv(data.frame(simulate_100),file='simulate_100.csv',row.names = FALSE) |
| 221 | + |
| 222 | +# results for n = 100 |
| 223 | +print(describe(simulate_100),digits=4) |
| 224 | + |
| 225 | +# do the sam ewith n = 200 |
| 226 | +start_200 <-Sys.time() |
| 227 | +now <- foreach (i = seq(1,times)) %dopar%{ |
| 228 | + # do simulation |
| 229 | + #simulation <- function(n,data,model,lv, |
| 230 | + # n.include,groups,items,par,seed=1) |
| 231 | + simulation(200,data,cfa_model.help,'help', |
| 232 | + n.include, data$country,var.help,par.help,i) |
| 233 | + # message(sprintf('%d',i)) |
| 234 | +} |
| 235 | +end_200<-Sys.time() |
| 236 | +elapsed_200 <- end_200 - start_200 |
| 237 | +# merge result |
| 238 | +for (i in 1:times){ |
| 239 | + if (i == 1){ |
| 240 | + simulate_200 <- now[[1]] |
| 241 | + }else{ |
| 242 | + simulate_200 <- rbind(simulate_200,now[[i]]) |
| 243 | + } |
| 244 | +} |
| 245 | +# save n = 200 |
| 246 | +write.csv(data.frame(simulate_200),file='simulate_200.csv',row.names = FALSE) |
| 247 | +print(describe(simulate_200),digits=4) |
| 248 | + |
| 249 | +# then n= 500 |
| 250 | +start_500 <-Sys.time() |
| 251 | +now <- foreach (i = seq(1,times)) %dopar%{ |
| 252 | + # do simulation |
| 253 | + #simulation <- function(n,data,model,lv, |
| 254 | + # n.include,groups,items,par,seed=1) |
| 255 | + simulation(500,data,cfa_model.help,'help', |
| 256 | + n.include, data$country,var.help,par.help,i) |
| 257 | + # message(sprintf('%d',i)) |
| 258 | +} |
| 259 | +end_500<-Sys.time() |
| 260 | +elapsed_500 <- end_500 - start_500 |
| 261 | +# merge result |
| 262 | +for (i in 1:times){ |
| 263 | + if (i == 1){ |
| 264 | + simulate_500 <- now[[1]] |
| 265 | + }else{ |
| 266 | + simulate_500 <- rbind(simulate_500,now[[i]]) |
| 267 | + } |
| 268 | +} |
| 269 | +# save n = 500 |
| 270 | +write.csv(data.frame(simulate_500),file='simulate_500.csv',row.names = FALSE) |
| 271 | +print(describe(simulate_500),digits=4) |
| 272 | + |
| 273 | +# terminate multiprocessing |
| 274 | +parallel::stopCluster(cl) |
| 275 | + |
| 276 | +# in all cases, cor ≥ 95%. Good |
| 277 | + |
| 278 | + |
| 279 | +##### |
| 280 | +# calculate factor scores based on aligned loadings and intercepts |
| 281 | + |
| 282 | +# function to implement factor score calculation |
| 283 | +# from adjusted lambda and nu |
| 284 | +# basically, x = lambda*X + nu |
| 285 | +# so, X = inv (lambda) (x - nu) |
| 286 | +aligned.factor.scores <- function(lambda,nu,y){ |
| 287 | + #calculate inverse matrix |
| 288 | + lambda1 <- ginv((lambda)) |
| 289 | + #create matrix for nu |
| 290 | + ns <- nrow(y) |
| 291 | + nus <- matrix(nu,nrow=ns, ncol=length(nu), byrow=T) |
| 292 | + # y - nu |
| 293 | + y_nu <- y - nu |
| 294 | + F <- lambda1 %*% t(as.matrix(y_nu)) |
| 295 | +} |
| 296 | + |
| 297 | +# calculate score |
| 298 | +# do calculation for each country, and then merge |
| 299 | + |
| 300 | +for (i in 1:(n.include)){ |
| 301 | + if (i == 1){ |
| 302 | + # first country |
| 303 | + # create new matrix |
| 304 | + data.aligned <- data[data$country==countries[i],] |
| 305 | + # calculate factor score |
| 306 | + Fs <- aligned.factor.scores(mod.help$lambda.aligned[i,], |
| 307 | + mod.help$nu.aligned[i,], |
| 308 | + data[data$country==countries[i],var.help]) |
| 309 | + data.aligned$help <- t(Fs) |
| 310 | + }else{ |
| 311 | + # other than the first country |
| 312 | + # append |
| 313 | + current <- data[data$country==countries[i],] |
| 314 | + Fs <- aligned.factor.scores(mod.help$lambda.aligned[i,], |
| 315 | + mod.help$nu.aligned[i,], |
| 316 | + data[data$country==countries[i],var.help]) |
| 317 | + current$help <- t(Fs) |
| 318 | + data.aligned <- rbind(data.aligned,current) |
| 319 | + } |
| 320 | +} |
| 321 | + |
| 322 | +# save aligned result |
| 323 | +write.csv(data.frame(data.aligned),file='aligned.csv',row.names = FALSE) |
0 commit comments