-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcmd_vcf_ibs_matrix.cpp
256 lines (215 loc) · 8.26 KB
/
cmd_vcf_ibs_matrix.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
#include "cramore.h"
#include "bcf_filter_arg.h"
#include "bcf_ordered_reader.h"
#include "bcf_variant_key.h"
#include "tsv_reader.h"
int32_t cmdVcfIBSMatrix(int32_t argc, char** argv) {
std::string listVcf; // list of small VCF files
std::string inVcf;
std::string refVcf; // large VCF file containing many samples
std::string out; // output file name containing IBS matrix
std::string reg;
int32_t verbose = 20000;
bcf_vfilter_arg vfilt;
paramList pl;
BEGIN_LONG_PARAMS(longParameters)
LONG_PARAM_GROUP("Input Sites", NULL)
LONG_STRING_PARAM("list",&listVcf, "List of VCF files, typically single sample")
LONG_STRING_PARAM("vcf",&inVcf, "Input VCF")
LONG_STRING_PARAM("panel",&refVcf,"VCF panel containing genotypes to compare")
LONG_PARAM_GROUP("Variant Filtering Options", NULL)
LONG_MULTI_STRING_PARAM("apply-filter",&vfilt.required_filters, "Require at least one of the listed FILTER strings")
LONG_STRING_PARAM("include-expr",&vfilt.include_expr, "Include sites for which expression is true")
LONG_STRING_PARAM("exclude-expr",&vfilt.exclude_expr, "Exclude sites for which expression is true")
LONG_PARAM_GROUP("Output Options", NULL)
LONG_STRING_PARAM("out", &out, "Output file to store IBS matrix")
LONG_INT_PARAM("verbose",&verbose,"Frequency of verbose output (1/n)")
END_LONG_PARAMS();
pl.Add(new longParams("Available Options", longParameters));
pl.Read(argc, argv);
pl.Status();
// sanity check of input arguments
if ( ( listVcf.empty() + inVcf.empty() != 1 ) || refVcf.empty() || out.empty() ) {
error("[E:%s:%d %s] --list or --vcf, --panel --out are required parameters",__FILE__,__LINE__,__FUNCTION__);
}
notice("Analysis started");
// for now, let's load all genotypes together
std::map<variantKeyS, std::map<int32_t,int32_t> > mGeno;
std::vector<GenomeInterval> intervals;
std::vector<std::string> listIDs;
std::vector<int32_t> nsamplesPerVcf;
int32_t isample = 0;
int32_t* gts = NULL;
int32_t n_gts = 0, geno = 0;
// read the list of VCFs
std::vector<std::string> vcfs;
if ( !listVcf.empty() ) {
tsv_reader rdr(listVcf.c_str());
for(int32_t i=0; rdr.read_line() > 0; ++i) {
vcfs.push_back(rdr.str_field_at(0));
}
rdr.close();
}
else {
vcfs.push_back(inVcf);
}
for(int32_t i=0; i < vcfs.size(); ++i) {
BCFOrderedReader odr(vcfs[i].c_str(), intervals);
notice("Processing BCF file #%d - %s",i, vcfs[i].c_str());
bcf1_t* iv = bcf_init();
int32_t nsamples = bcf_hdr_nsamples(odr.hdr);
nsamplesPerVcf.push_back(nsamples);
for(int32_t j=0; j < nsamples; ++j) {
listIDs.push_back(bcf_hdr_get_sample_name(odr.hdr,j));
}
while(odr.read(iv)) {
variantKeyS key(odr.hdr, iv);
std::map<int32_t,int32_t>& var = mGeno[key]; // will create new if needed
bcf_get_genotypes(odr.hdr, iv, >s, &n_gts);
for(int32_t j=0; j < nsamples; ++j) {
geno = bcf_gt_allele(gts[2*j]) + bcf_gt_allele(gts[2*j+1]);
var[isample+j] = geno;
}
free(gts);
gts = NULL;
n_gts = 0;
}
odr.close();
isample += nsamples;
}
notice("Finished loading input VCF files.. Loading the reference VCF..");
// Process the reference BCF
// handle filter string
if ( !reg.empty() ) {
parse_intervals(intervals, "", reg);
}
BCFOrderedReader odr(refVcf.c_str(), intervals);
std::string filter_str;
int32_t filter_logic = 0;
if ( vfilt.include_expr.empty() ) {
if ( vfilt.exclude_expr.empty() ) {
// do nothing
}
else {
filter_str = vfilt.exclude_expr;
filter_logic |= FLT_EXCLUDE;
}
}
else {
if ( vfilt.exclude_expr.empty() ) {
filter_str = vfilt.include_expr;
filter_logic |= FLT_INCLUDE;
}
else {
error("[E:%s:%d %s] Cannot use both --include-expr and --exclude-expr options",__FILE__,__LINE__,__FUNCTION__);
}
}
filter_t* filt = NULL;
if ( filter_logic != 0 )
filter_init(odr.hdr, filter_str.c_str());
// handle --apply-filtrs
std::vector<int32_t> req_flt_ids;
if ( !vfilt.required_filters.empty() ) {
for(int32_t i=0; i < (int32_t)vfilt.required_filters.size(); ++i) {
req_flt_ids.push_back(bcf_hdr_id2int(odr.hdr, BCF_DT_ID, vfilt.required_filters[i].c_str()));
}
}
int32_t nVariant = 0;
int32_t nRefSamples = bcf_hdr_nsamples(odr.hdr);
std::vector<std::string> refIDs;
for(int32_t j=0; j < nRefSamples; ++j) {
refIDs.push_back(bcf_hdr_get_sample_name(odr.hdr,j));
}
notice("Started Reading site information from VCF file, identifying %d samples", nRefSamples);
if ( nRefSamples == 0 )
error("FATAL ERROR: The VCF does not have any samples with genotypes");
int32_t* p_gt = NULL;
int32_t n_gt = 0;
int32_t nskip = 0, nparsed = 0;
bcf1_t* iv = bcf_init();
// tensors of IBS
int32_t nListSamples = (int32_t)listIDs.size();
std::vector< std::vector< std::vector<int32_t> > > list2ref2ibs(nListSamples);
for(int32_t i=0; i < nListSamples; ++i) {
list2ref2ibs[i].resize(nRefSamples);
for(int32_t j=0; j < nRefSamples; ++j) {
list2ref2ibs[i][j].resize(9);
}
}
std::vector<int32_t> genos(nRefSamples);
for(int32_t k=0; odr.read(iv); ++k) { // read marker
// periodic message to user
if ( k % verbose == 0 )
notice("Processing %d markers at %s:%d. Skipped %d filtered markers, retaining %d variants", k, bcf_hdr_id2name(odr.hdr, iv->rid), iv->pos+1, nskip, nVariant);
variantKeyS key(odr.hdr, iv);
// check if the variant need to be parsed
std::map<variantKeyS, std::map<int32_t,int32_t> >::iterator itG = mGeno.find(key);
if ( itG == mGeno.end() ) {
++nskip;
continue; // no need to parse the genotypes
}
// unpack FILTER column
bcf_unpack(iv, BCF_UN_FLT);
// check --apply-filters
bool has_filter = req_flt_ids.empty() ? true : false;
if ( ! has_filter ) {
//notice("%d %d", iv->d.n_flt, (int32_t)req_flt_ids.size());
for(int32_t i=0; i < iv->d.n_flt; ++i) {
for(int32_t j=0; j < (int32_t)req_flt_ids.size(); ++j) {
if ( req_flt_ids[j] == iv->d.flt[i] )
has_filter = true;
}
}
}
if ( ! has_filter ) { ++nskip; continue; }
// check filter logic
if ( filt != NULL ) {
int32_t ret = filter_test(filt, iv, NULL);
if ( filter_logic == FLT_INCLUDE ) { if ( !ret) has_filter = false; }
else if ( ret ) { has_filter = false; }
}
if ( ! has_filter ) { ++nskip; continue; }
++nVariant;
// extract genotype and apply genotype level filter
if ( bcf_get_genotypes(odr.hdr, iv, &p_gt, &n_gt) < 0 ) {
error("[E:%s:%d %s] Cannot find the field GT from the VCF file at position %s:%d",__FILE__,__LINE__,__FUNCTION__, bcf_hdr_id2name(odr.hdr, iv->rid), iv->pos+1);
}
for(int32_t i=0; i < nRefSamples; ++i) {
int32_t g1 = p_gt[2*i];
int32_t g2 = p_gt[2*i+1];
if ( bcf_gt_is_missing(g1) || bcf_gt_is_missing(g2) ) {
genos[i] = -1;
//geno = 0;
}
else {
genos[i] = ((bcf_gt_allele(g1) > 0) ? 1 : 0) + ((bcf_gt_allele(g2) > 0) ? 1 : 0);
}
}
// iterate sparse genotypes
for(std::map<int32_t,int32_t>::iterator it = itG->second.begin(); it != itG->second.end(); ++it) {
if ( it->second >= 0 ) {
for(int32_t i=0; i < nRefSamples; ++i) {
if ( genos[i] >= 0 )
++list2ref2ibs[it->first][i][it->second*3 + genos[i]];
}
}
}
free(p_gt);
p_gt = NULL;
n_gt = 0;
}
notice("Finished Processing %d markers across %d samples, Skipping %d filtered markers", nVariant, nskip);
htsFile* wf = hts_open(out.c_str(), (out.substr(out.size()-3).compare(".gz") == 0) ? "wz" : "w");
hprintf(wf, "LIST_ID\tREF_ID\tREF_REF\tREF_HET\tREF_HOM\tHET_REF\tHET_HOM\tHOM_REF\tHOM_HET\tHOM_HOM\tCONC_ALL\tCONC_NREF\n");
for(int32_t i=0; i < nListSamples; ++i) {
for(int32_t j=0; j < nRefSamples; ++j) {
std::vector<int32_t>& v = list2ref2ibs[i][j];
int32_t nconc = v[0] + v[4] + v[8];
int32_t ndisc = v[1] + v[2] + v[3] + v[5] + v[6] + v[7];
hprintf(wf, "%s\t%s\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%.5lf\t%.5lf\n", listIDs[i].c_str(), refIDs[j].c_str(), v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7], v[8], nconc/(nconc+ndisc+1e-6), (nconc-v[0])/(nconc+ndisc-v[0]+1e-6));
}
}
hts_close(wf);
notice("Analysis Finished");
return 0;
}