|
| 1 | +#----Median Of Median finding algorithm implimentation in python---- |
| 2 | + |
| 3 | + |
| 4 | +#used to avoid overflow |
| 5 | +INT_MAX=2**32 |
| 6 | + |
| 7 | +#finding the kth element from the list |
| 8 | +def kthS(a,k) : |
| 9 | + a.sort() |
| 10 | + return a[k-1] |
| 11 | + |
| 12 | +#finding median from the fixed length of array( median of arr[] from index l to l+n ) |
| 13 | +def findmedian(a,l,n): |
| 14 | + a=a[l:l+n] |
| 15 | + a.sort() |
| 16 | + return a[n//2] |
| 17 | + |
| 18 | +#This funrions uses median of median algo to find kthsmallest number in linear time |
| 19 | +def kthSmallest(a,l,r,k): |
| 20 | + if k>0 and k<=r-l+1: |
| 21 | + n=r-l+1 |
| 22 | + median=[0]*((n+4)//5) |
| 23 | + i=0 |
| 24 | + #divide the array into smaller array of size 5 and find median of each small array |
| 25 | + while(i<n//5): |
| 26 | + median[i]=findmedian(a,l+i*5,5) |
| 27 | + i+=1 |
| 28 | + # For last group with less than 5 elements |
| 29 | + if i*5<n: |
| 30 | + median[i] = findmedian(a,l+i*5, n%5) |
| 31 | + i+=1 |
| 32 | + # Find median of all medians using recursive call. |
| 33 | + # If median[] has only one element, then no need |
| 34 | + # of recursive call |
| 35 | + if(i == 1): |
| 36 | + medOfMed = median[i-1] |
| 37 | + else: |
| 38 | + kthSmallest(median, 0, i-1, i//2) |
| 39 | + # Partition the array around a medOfMed |
| 40 | + # element and get position of pivot |
| 41 | + # element in sorted array |
| 42 | + pos = partition(a, l, r, medOfMed) |
| 43 | + if pos-l == k-1: |
| 44 | + return a[pos] |
| 45 | + if (pos-l > k-1): |
| 46 | + return kthSmallest(a, l, pos-1, k) |
| 47 | + return kthSmallest(a, pos+1, r, k-pos+l-1) |
| 48 | + return INT_MAX |
| 49 | +#for swapping two array elements |
| 50 | +def swap(arr, a, b): |
| 51 | + temp = arr[a] |
| 52 | + arr[a] = arr[b] |
| 53 | + arr[b] = temp |
| 54 | + |
| 55 | +# It searches for x in arr[l..r], |
| 56 | +# and partitions the array around x |
| 57 | +def partition(a,l,r,x): |
| 58 | + for i in range(l,r): |
| 59 | + if (a[i] == x): |
| 60 | + break |
| 61 | + swap(a,i,r) |
| 62 | + i = l |
| 63 | + for j in range(l,r): |
| 64 | + if (a[j] <= x): |
| 65 | + swap(a,i,j) |
| 66 | + i+=1 |
| 67 | + swap(a,i,r); |
| 68 | + return i; |
| 69 | +#driver code |
| 70 | +def main(): |
| 71 | + #Total number of elements in the list is n |
| 72 | + n=int(input("Enter value of n:")) |
| 73 | + k=(n+1)//2 |
| 74 | + a=[] |
| 75 | + #entering n elements to the lsit |
| 76 | + for i in range(n): |
| 77 | + x=int(input()) |
| 78 | + a.append(x) |
| 79 | + #if total number of elements is even just print the kth elements |
| 80 | + if(n%2==0): |
| 81 | + print("result is: %d"%kthS(a,k)) |
| 82 | + return |
| 83 | + #if total number of elements is odd the use median of median algo to find kth smallest |
| 84 | + print("result %d"%kthSmallest(a, 0, n-1, k)) |
| 85 | +#Calling the main funtion |
| 86 | +if __name__ == '__main__': |
| 87 | + main() |
0 commit comments