|
| 1 | +# Part of Cosmos by OpenGenus Foundation |
| 2 | + |
| 3 | +''' |
| 4 | +def Johnsons(): |
| 5 | + data = list() |
| 6 | + source = list() |
| 7 | + destination = list() |
| 8 | + edgecost = list() |
| 9 | + test = 0 |
| 10 | + vertices = 0 |
| 11 | + edges = 0 |
| 12 | + data = readfile() |
| 13 | + vertexlist = list() |
| 14 | + distance = list() |
| 15 | + vertices, edges, source, destination, edgecost, vertexlist, distance = setdata(data) |
| 16 | + predecessor = list() |
| 17 | + d = list() |
| 18 | + d, predecessor = intialize(distance) |
| 19 | + #relaxation |
| 20 | + source, destination, edgecost, d, predecessor = relax(vertices, source, destination, edgecost, d, predecessor,edges) |
| 21 | + #change weights |
| 22 | + vertexlist.reverse() |
| 23 | + source, destination, edgecost, d = reweight(vertices, source, destination, edgecost, d,edges) |
| 24 | + output(source, destination, edgecost) |
| 25 | + for x in vertexlist: |
| 26 | + print('Running Dijkstra on vertex ' + str(x)) |
| 27 | + Dijkstra(vertexlist,x,source, destination, edgecost, predecessor, edges,vertices) |
| 28 | +
|
| 29 | +''' |
| 30 | + |
| 31 | + |
| 32 | + |
| 33 | + |
| 34 | +from heapq import heappush, heappop |
| 35 | +from datetime import datetime |
| 36 | +from copy import deepcopy |
| 37 | +graph = { |
| 38 | + 'a' : {'b':-2}, |
| 39 | + 'b' : {'c':-1}, |
| 40 | + 'c' : {'x':2, 'a':4, 'y':-3}, |
| 41 | + 'z' : {'x':1, 'y':-4}, |
| 42 | + 'x' : {}, |
| 43 | + 'y' : {}, |
| 44 | +} |
| 45 | + |
| 46 | +inf = float('inf') |
| 47 | +dist = {} |
| 48 | + |
| 49 | +def read_graph(file,n): |
| 50 | + graph = dict() |
| 51 | + with open(file) as f: |
| 52 | + for l in f: |
| 53 | + (u, v, w) = l.split() |
| 54 | + if int(u) not in graph: |
| 55 | + graph[int(u)] = dict() |
| 56 | + graph[int(u)][int(v)] = int(w) |
| 57 | + for i in range(n): |
| 58 | + if i not in graph: |
| 59 | + graph[i] = dict() |
| 60 | + return graph |
| 61 | + |
| 62 | +def dijkstra(graph, s): |
| 63 | + n = len(graph.keys()) |
| 64 | + dist = dict() |
| 65 | + Q = list() |
| 66 | + |
| 67 | + for v in graph: |
| 68 | + dist[v] = inf |
| 69 | + dist[s] = 0 |
| 70 | + |
| 71 | + heappush(Q, (dist[s], s)) |
| 72 | + |
| 73 | + while Q: |
| 74 | + d, u = heappop(Q) |
| 75 | + if d < dist[u]: |
| 76 | + dist[u] = d |
| 77 | + for v in graph[u]: |
| 78 | + if dist[v] > dist[u] + graph[u][v]: |
| 79 | + dist[v] = dist[u] + graph[u][v] |
| 80 | + heappush(Q, (dist[v], v)) |
| 81 | + return dist |
| 82 | + |
| 83 | +def initialize_single_source(graph, s): |
| 84 | + for v in graph: |
| 85 | + dist[v] = inf |
| 86 | + dist[s] = 0 |
| 87 | + |
| 88 | +def relax(graph, u, v): |
| 89 | + if dist[v] > dist[u] + graph[u][v]: |
| 90 | + dist[v] = dist[u] + graph[u][v] |
| 91 | + |
| 92 | +def bellman_ford(graph, s): |
| 93 | + initialize_single_source(graph, s) |
| 94 | + edges = [(u, v) for u in graph for v in graph[u].keys()] |
| 95 | + number_vertices = len(graph) |
| 96 | + for i in range(number_vertices-1): |
| 97 | + for (u, v) in edges: |
| 98 | + relax(graph, u, v) |
| 99 | + for (u, v) in edges: |
| 100 | + if dist[v] > dist[u] + graph[u][v]: |
| 101 | + return False # there exists a negative cycle |
| 102 | + return True |
| 103 | + |
| 104 | +def add_extra_node(graph): |
| 105 | + graph[0] = dict() |
| 106 | + for v in graph.keys(): |
| 107 | + if v != 0: |
| 108 | + graph[0][v] = 0 |
| 109 | + |
| 110 | +def reweighting(graph_new): |
| 111 | + add_extra_node(graph_new) |
| 112 | + if not bellman_ford(graph_new, 0): |
| 113 | + # graph contains negative cycles |
| 114 | + return False |
| 115 | + for u in graph_new: |
| 116 | + for v in graph_new[u]: |
| 117 | + if u != 0: |
| 118 | + graph_new[u][v] += dist[u] - dist[v] |
| 119 | + del graph_new[0] |
| 120 | + return graph_new |
| 121 | + |
| 122 | +def johnsons(graph_new): |
| 123 | + graph = reweighting(graph_new) |
| 124 | + if not graph: |
| 125 | + return False |
| 126 | + final_distances = {} |
| 127 | + for u in graph: |
| 128 | + final_distances[u] = dijkstra(graph, u) |
| 129 | + |
| 130 | + for u in final_distances: |
| 131 | + for v in final_distances[u]: |
| 132 | + final_distances[u][v] += dist[v] - dist[u] |
| 133 | + return final_distances |
| 134 | + |
| 135 | +def compute_min(final_distances): |
| 136 | + return min(final_distances[u][v] for u in final_distances for v in final_distances[u]) |
| 137 | + |
| 138 | +if __name__ == "__main__": |
| 139 | + # graph = read_graph("graph.txt", 1000) |
| 140 | + graph_new = deepcopy(graph) |
| 141 | + t1 = datetime.utcnow() |
| 142 | + final_distances = johnsons(graph_new) |
| 143 | + if not final_distances: |
| 144 | + print("Negative cycle") |
| 145 | + else: |
| 146 | + print(compute_min(final_distances)) |
| 147 | + print(datetime.utcnow() - t1) |
| 148 | + |
| 149 | + |
0 commit comments