|
| 1 | +/* C++ program to find a prime factor of composite using |
| 2 | +Pollard's Rho algorithm */ |
| 3 | +#include<bits/stdc++.h> |
| 4 | +using namespace std; |
| 5 | + |
| 6 | +/* Function to calculate (base^exponent)%modulus */ |
| 7 | +long long int modular_pow(long long int base, int exponent, |
| 8 | + long long int modulus) |
| 9 | +{ |
| 10 | + /* initialize result */ |
| 11 | + long long int result = 1; |
| 12 | + |
| 13 | + while (exponent > 0) |
| 14 | + { |
| 15 | + /* if y is odd, multiply base with result */ |
| 16 | + if (exponent & 1) |
| 17 | + result = (result * base) % modulus; |
| 18 | + |
| 19 | + /* exponent = exponent/2 */ |
| 20 | + exponent = exponent >> 1; |
| 21 | + |
| 22 | + /* base = base * base */ |
| 23 | + base = (base * base) % modulus; |
| 24 | + } |
| 25 | + return result; |
| 26 | +} |
| 27 | + |
| 28 | +/* method to return prime divisor for n */ |
| 29 | +long long int PollardRho(long long int n) |
| 30 | +{ |
| 31 | + /* initialize random seed */ |
| 32 | + srand (time(NULL)); |
| 33 | + |
| 34 | + /* no prime divisor for 1 */ |
| 35 | + if (n==1) return n; |
| 36 | + |
| 37 | + /* even number means one of the divisors is 2 */ |
| 38 | + if (n % 2 == 0) return 2; |
| 39 | + |
| 40 | + /* we will pick from the range [2, N) */ |
| 41 | + long long int x = (rand()%(n-2))+2; |
| 42 | + long long int y = x; |
| 43 | + |
| 44 | + /* the constant in f(x). |
| 45 | + * Algorithm can be re-run with a different c |
| 46 | + * if it throws failure for a composite. */ |
| 47 | + long long int c = (rand()%(n-1))+1; |
| 48 | + |
| 49 | + /* Initialize candidate divisor (or result) */ |
| 50 | + long long int d = 1; |
| 51 | + |
| 52 | + /* until the prime factor isn't obtained. |
| 53 | + If n is prime, return n */ |
| 54 | + while (d==1) |
| 55 | + { |
| 56 | + /* Tortoise Move: x(i+1) = f(x(i)) */ |
| 57 | + x = (modular_pow(x, 2, n) + c + n)%n; |
| 58 | + |
| 59 | + /* Hare Move: y(i+1) = f(f(y(i))) */ |
| 60 | + y = (modular_pow(y, 2, n) + c + n)%n; |
| 61 | + y = (modular_pow(y, 2, n) + c + n)%n; |
| 62 | + |
| 63 | + /* check gcd of |x-y| and n */ |
| 64 | + d = __gcd(abs(x-y), n); |
| 65 | + |
| 66 | + /* retry if the algorithm fails to find prime factor |
| 67 | + * with chosen x and c */ |
| 68 | + if (d==n) return PollardRho(n); |
| 69 | + } |
| 70 | + |
| 71 | + return d; |
| 72 | +} |
| 73 | + |
| 74 | +/* driver function */ |
| 75 | +int main() |
| 76 | +{ |
| 77 | + long long int n = 10967535067; |
| 78 | + printf("One of the divisors for %lld is %lld.", |
| 79 | + n, PollardRho(n)); |
| 80 | + return 0; |
| 81 | +} |
0 commit comments