|
| 1 | +/* C++ program for solution of Hamiltonian |
| 2 | +Cycle problem using backtracking */ |
| 3 | + |
| 4 | +#include <bits/stdc++.h> |
| 5 | +using namespace std; |
| 6 | + |
| 7 | +// Number of vertices in the graph |
| 8 | +#define V 5 |
| 9 | + |
| 10 | +void printSolution(int path[]); |
| 11 | + |
| 12 | +/* A utility function to check if |
| 13 | +the vertex v can be added at index 'pos' |
| 14 | +in the Hamiltonian Cycle constructed |
| 15 | +so far (stored in 'path[]') */ |
| 16 | +bool isSafe(int v, bool graph[V][V], |
| 17 | + int path[], int pos) |
| 18 | +{ |
| 19 | + /* Check if this vertex is an adjacent |
| 20 | + vertex of the previously added vertex. */ |
| 21 | + if (graph [path[pos - 1]][ v ] == 0) |
| 22 | + return false; |
| 23 | + |
| 24 | + /* Check if the vertex has already been included. |
| 25 | + This step can be optimized by creating |
| 26 | + an array of size V */ |
| 27 | + for (int i = 0; i < pos; i++) |
| 28 | + if (path[i] == v) |
| 29 | + return false; |
| 30 | + |
| 31 | + return true; |
| 32 | +} |
| 33 | + |
| 34 | +/* A recursive utility function |
| 35 | +to solve hamiltonian cycle problem */ |
| 36 | +bool hamCycleUtil(bool graph[V][V], |
| 37 | + int path[], int pos) |
| 38 | +{ |
| 39 | + /* base case: If all vertices are |
| 40 | + included in Hamiltonian Cycle */ |
| 41 | + if (pos == V) |
| 42 | + { |
| 43 | + // And if there is an edge from the |
| 44 | + // last included vertex to the first vertex |
| 45 | + if (graph[path[pos - 1]][path[0]] == 1) |
| 46 | + return true; |
| 47 | + else |
| 48 | + return false; |
| 49 | + } |
| 50 | + |
| 51 | + // Try different vertices as a next candidate |
| 52 | + // in Hamiltonian Cycle. We don't try for 0 as |
| 53 | + // we included 0 as starting point in hamCycle() |
| 54 | + for (int v = 1; v < V; v++) |
| 55 | + { |
| 56 | + /* Check if this vertex can be added |
| 57 | + // to Hamiltonian Cycle */ |
| 58 | + if (isSafe(v, graph, path, pos)) |
| 59 | + { |
| 60 | + path[pos] = v; |
| 61 | + |
| 62 | + /* recur to construct rest of the path */ |
| 63 | + if (hamCycleUtil (graph, path, pos + 1) == true) |
| 64 | + return true; |
| 65 | + |
| 66 | + /* If adding vertex v doesn't lead to a solution, |
| 67 | + then remove it */ |
| 68 | + path[pos] = -1; |
| 69 | + } |
| 70 | + } |
| 71 | + |
| 72 | + /* If no vertex can be added to |
| 73 | + Hamiltonian Cycle constructed so far, |
| 74 | + then return false */ |
| 75 | + return false; |
| 76 | +} |
| 77 | + |
| 78 | +/* This function solves the Hamiltonian Cycle problem |
| 79 | +using Backtracking. It mainly uses hamCycleUtil() to |
| 80 | +solve the problem. It returns false if there is no |
| 81 | +Hamiltonian Cycle possible, otherwise return true |
| 82 | +and prints the path. Please note that there may be |
| 83 | +more than one solutions, this function prints one |
| 84 | +of the feasible solutions. */ |
| 85 | +bool hamCycle(bool graph[V][V]) |
| 86 | +{ |
| 87 | + int *path = new int[V]; |
| 88 | + for (int i = 0; i < V; i++) |
| 89 | + path[i] = -1; |
| 90 | + |
| 91 | + /* Let us put vertex 0 as the first vertex in the path. |
| 92 | + If there is a Hamiltonian Cycle, then the path can be |
| 93 | + started from any point of the cycle as the graph is undirected */ |
| 94 | + path[0] = 0; |
| 95 | + if (hamCycleUtil(graph, path, 1) == false ) |
| 96 | + { |
| 97 | + cout << "\nSolution does not exist"; |
| 98 | + return false; |
| 99 | + } |
| 100 | + |
| 101 | + printSolution(path); |
| 102 | + return true; |
| 103 | +} |
| 104 | + |
| 105 | +/* A utility function to print solution */ |
| 106 | +void printSolution(int path[]) |
| 107 | +{ |
| 108 | + cout << "Solution Exists:" |
| 109 | + " Following is one Hamiltonian Cycle \n"; |
| 110 | + for (int i = 0; i < V; i++) |
| 111 | + cout << path[i] << " "; |
| 112 | + |
| 113 | + // Let us print the first vertex again |
| 114 | + // to show the complete cycle |
| 115 | + cout << path[0] << " "; |
| 116 | + cout << endl; |
| 117 | +} |
| 118 | + |
| 119 | +// Driver Code |
| 120 | +int main() |
| 121 | +{ |
| 122 | + /* Let us create the following graph |
| 123 | + (0)--(1)--(2) |
| 124 | + | / \ | |
| 125 | + | / \ | |
| 126 | + | / \ | |
| 127 | + (3)-------(4) */ |
| 128 | + bool graph1[V][V] = {{0, 1, 0, 1, 0}, |
| 129 | + {1, 0, 1, 1, 1}, |
| 130 | + {0, 1, 0, 0, 1}, |
| 131 | + {1, 1, 0, 0, 1}, |
| 132 | + {0, 1, 1, 1, 0}}; |
| 133 | + |
| 134 | + // Print the solution |
| 135 | + hamCycle(graph1); |
| 136 | + |
| 137 | + /* Let us create the following graph |
| 138 | + (0)--(1)--(2) |
| 139 | + | / \ | |
| 140 | + | / \ | |
| 141 | + | / \ | |
| 142 | + (3) (4) */ |
| 143 | + bool graph2[V][V] = {{0, 1, 0, 1, 0}, |
| 144 | + {1, 0, 1, 1, 1}, |
| 145 | + {0, 1, 0, 0, 1}, |
| 146 | + {1, 1, 0, 0, 0}, |
| 147 | + {0, 1, 1, 0, 0}}; |
| 148 | + |
| 149 | + // Print the solution |
| 150 | + hamCycle(graph2); |
| 151 | + |
| 152 | + return 0; |
| 153 | +} |
| 154 | + |
| 155 | +// This code is taken from geeksforgeeks and was contributed by rathbhupendra |
0 commit comments