|
| 1 | +// Karger's algorithm to find Minimum Cut in an |
| 2 | +// undirected, unweighted and connected graph. |
| 3 | +#include <stdio.h> |
| 4 | +#include <stdlib.h> |
| 5 | +#include <time.h> |
| 6 | + |
| 7 | +// a structure to represent a unweighted edge in graph |
| 8 | +struct edge |
| 9 | +{ |
| 10 | + int src, dest; |
| 11 | +}; |
| 12 | + |
| 13 | +// a structure to represent a connected, undirected |
| 14 | +// and unweighted graph as a collection of edges. |
| 15 | +struct Graph |
| 16 | +{ |
| 17 | + // V-> Number of vertices, E-> Number of edges |
| 18 | + int V, E; |
| 19 | + |
| 20 | + // graph is represented as an array of edges. |
| 21 | + // Since the graph is undirected, the edge |
| 22 | + // from src to dest is also edge from dest |
| 23 | + // to src. Both are counted as 1 edge here. |
| 24 | + edge* edge; |
| 25 | +}; |
| 26 | + |
| 27 | +// A structure to represent a sub_set for union-find |
| 28 | +struct sub_set |
| 29 | +{ |
| 30 | + int parent; |
| 31 | + int rank; |
| 32 | +}; |
| 33 | + |
| 34 | +// Function prototypes for union-find (These functions are defined |
| 35 | +// after karger_min_cut() ) |
| 36 | +int find(struct sub_set subsets[], int i); |
| 37 | +void union(struct sub_set subsets[], int x, int y); |
| 38 | + |
| 39 | +// A very basic implementation of Karger's randomized |
| 40 | +// algorithm for finding the minimum cut. Please note |
| 41 | +// that Karger's algorithm is a Monte Carlo Randomized algo |
| 42 | +// and the cut returned by the algorithm may not be |
| 43 | +// minimum always |
| 44 | +int karger_min_cut(struct Graph* graph) |
| 45 | +{ |
| 46 | + // Get data of given graph |
| 47 | + int V = graph->V, E = graph->E; |
| 48 | + edge *edge = graph->edge; |
| 49 | + |
| 50 | + // Allocate memory for creating V subsets. |
| 51 | + struct sub_set *subsets = new sub_set[V]; |
| 52 | + |
| 53 | + // Create V subsets with single elements |
| 54 | + for (int v = 0; v < V; ++v) |
| 55 | + { |
| 56 | + subsets[v].parent = v; |
| 57 | + subsets[v].rank = 0; |
| 58 | + } |
| 59 | + |
| 60 | + // Initially there are V vertices in |
| 61 | + // contracted graph |
| 62 | + int vertices = V; |
| 63 | + |
| 64 | + // Keep contracting vertices until there are |
| 65 | + // 2 vertices. |
| 66 | + while (vertices > 2) |
| 67 | + { |
| 68 | + // Pick a random edge |
| 69 | + int i = rand() % E; |
| 70 | + |
| 71 | + // Find vertices (or sets) of two corners |
| 72 | + // of current edge |
| 73 | + int subset1 = find(subsets, edge[i].src); |
| 74 | + int subset2 = find(subsets, edge[i].dest); |
| 75 | + |
| 76 | + // If two corners belong to same sub_set, |
| 77 | + // then no point considering this edge |
| 78 | + if (subset1 == subset2) |
| 79 | + continue; |
| 80 | + |
| 81 | + // Else contract the edge (or combine the |
| 82 | + // corners of edge into one vertex) |
| 83 | + else |
| 84 | + { |
| 85 | + printf("Contracting edge %d-%d\n", |
| 86 | + edge[i].src, edge[i].dest); |
| 87 | + vertices--; |
| 88 | + union(subsets, subset1, subset2); |
| 89 | + } |
| 90 | + } |
| 91 | + |
| 92 | + // Now we have two vertices (or subsets) left in |
| 93 | + // the contracted graph, so count the edges between |
| 94 | + // two components and return the count. |
| 95 | + int cutedges = 0; |
| 96 | + for (int i=0; i<E; i++) |
| 97 | + { |
| 98 | + int subset1 = find(subsets, edge[i].src); |
| 99 | + int subset2 = find(subsets, edge[i].dest); |
| 100 | + if (subset1 != subset2) |
| 101 | + cutedges++; |
| 102 | + } |
| 103 | + |
| 104 | + return cutedges; |
| 105 | +} |
| 106 | + |
| 107 | +// A utility function to find set of an element i |
| 108 | +// (uses path compression technique) |
| 109 | +int find(struct sub_set subsets[], int i) |
| 110 | +{ |
| 111 | + // find root and make root as parent of i |
| 112 | + // (path compression) |
| 113 | + if (subsets[i].parent != i) |
| 114 | + subsets[i].parent = |
| 115 | + find(subsets, subsets[i].parent); |
| 116 | + |
| 117 | + return subsets[i].parent; |
| 118 | +} |
| 119 | + |
| 120 | +// A function that does union of two sets of x and y |
| 121 | +// (uses union by rank) |
| 122 | +void union(struct sub_set subsets[], int x, int y) |
| 123 | +{ |
| 124 | + int xroot = find(subsets, x); |
| 125 | + int yroot = find(subsets, y); |
| 126 | + |
| 127 | + // Attach smaller rank tree under root of high |
| 128 | + // rank tree (union by Rank) |
| 129 | + if (subsets[xroot].rank < subsets[yroot].rank) |
| 130 | + subsets[xroot].parent = yroot; |
| 131 | + else if (subsets[xroot].rank > subsets[yroot].rank) |
| 132 | + subsets[yroot].parent = xroot; |
| 133 | + |
| 134 | + // If ranks are same, then make one as root and |
| 135 | + // increment its rank by one |
| 136 | + else |
| 137 | + { |
| 138 | + subsets[yroot].parent = xroot; |
| 139 | + subsets[xroot].rank++; |
| 140 | + } |
| 141 | +} |
| 142 | + |
| 143 | +// Creates a graph with V vertices and E edges |
| 144 | +struct Graph* create_graph(int V, int E) |
| 145 | +{ |
| 146 | + Graph* graph = new Graph; |
| 147 | + graph->V = V; |
| 148 | + graph->E = E; |
| 149 | + graph->edge = new edge[E]; |
| 150 | + return graph; |
| 151 | +} |
| 152 | + |
| 153 | +// Driver program to test above functions |
| 154 | +int main() |
| 155 | +{ |
| 156 | + /* Let us create following unweighted graph |
| 157 | + 0------1 |
| 158 | + | \ | |
| 159 | + | \ | |
| 160 | + | \| |
| 161 | + 2------3 */ |
| 162 | + int V = 4; // Number of vertices in graph |
| 163 | + int E = 5; // Number of edges in graph |
| 164 | + struct Graph* graph = create_graph(V, E); |
| 165 | + |
| 166 | + // add edge 0-1 |
| 167 | + graph->edge[0].src = 0; |
| 168 | + graph->edge[0].dest = 1; |
| 169 | + |
| 170 | + // add edge 0-2 |
| 171 | + graph->edge[1].src = 0; |
| 172 | + graph->edge[1].dest = 2; |
| 173 | + |
| 174 | + // add edge 0-3 |
| 175 | + graph->edge[2].src = 0; |
| 176 | + graph->edge[2].dest = 3; |
| 177 | + |
| 178 | + // add edge 1-3 |
| 179 | + graph->edge[3].src = 1; |
| 180 | + graph->edge[3].dest = 3; |
| 181 | + |
| 182 | + // add edge 2-3 |
| 183 | + graph->edge[4].src = 2; |
| 184 | + graph->edge[4].dest = 3; |
| 185 | + |
| 186 | + // Use a different seed value for every run. |
| 187 | + srand(time(NULL)); |
| 188 | + |
| 189 | + printf("\nCut found by Karger's randomized algo is %d\n", |
| 190 | + karger_min_cut(graph)); |
| 191 | + |
| 192 | + return 0; |
| 193 | +} |
0 commit comments