Skip to content

Commit 08ccd61

Browse files
committed
Fix to pydocstyle D209 (Multi-line docstring closing quotes should be on a separate line)
1 parent 382be60 commit 08ccd61

File tree

5 files changed

+83
-55
lines changed

5 files changed

+83
-55
lines changed

.flake8

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@ ignore =
1313
N801, N802, N803, N806, N812,
1414
# pydocstyle
1515
D100, D101, D102, D103, D104, D105, D106, D107,
16-
D200, D202, D203, D204, D205, D207, D209, D212, D213,
16+
D200, D202, D203, D204, D205, D207, D212, D213,
1717
D301
1818
D400, D401, D402, D403, D413,
1919

lib/matplotlib/backends/backend_pdf.py

Lines changed: 19 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -95,9 +95,12 @@
9595

9696

9797
def fill(strings, linelen=75):
98-
"""Make one string from sequence of strings, with whitespace
99-
in between. The whitespace is chosen to form lines of at most
100-
linelen characters, if possible."""
98+
"""
99+
Make one string from sequence of strings, with whitespace in between.
100+
101+
The whitespace is chosen to form lines of at most *linelen* characters,
102+
if possible.
103+
"""
101104
currpos = 0
102105
lasti = 0
103106
result = []
@@ -295,8 +298,7 @@ def pdfRepr(self):
295298

296299

297300
class Verbatim:
298-
"""Store verbatim PDF command content for later inclusion in the
299-
stream."""
301+
"""Store verbatim PDF command content for later inclusion in the stream."""
300302
def __init__(self, x):
301303
self._x = x
302304

@@ -322,9 +324,16 @@ def pdfRepr(self):
322324

323325

324326
def _paint_path(fill, stroke):
325-
"""Return the PDF operator to paint a path in the following way:
326-
fill: fill the path with the fill color
327-
stroke: stroke the outline of the path with the line color"""
327+
"""
328+
Return the PDF operator to paint a path.
329+
330+
Parameters
331+
----------
332+
fill: bool
333+
Fill the path with the fill color.
334+
stroke: bool
335+
Stroke the outline of the path with the line color.
336+
"""
328337
if stroke:
329338
if fill:
330339
return Op.fill_stroke
@@ -339,7 +348,8 @@ def _paint_path(fill, stroke):
339348

340349

341350
class Stream:
342-
"""PDF stream object.
351+
"""
352+
PDF stream object.
343353
344354
This has no pdfRepr method. Instead, call begin(), then output the
345355
contents of the stream by calling write(), and finally call end().

lib/matplotlib/dviread.py

Lines changed: 24 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -69,45 +69,55 @@
6969
# argument bytes in this delta.
7070

7171
def _arg_raw(dvi, delta):
72-
"""Return *delta* without reading anything more from the dvi file"""
72+
"""Return *delta* without reading anything more from the dvi file."""
7373
return delta
7474

7575

7676
def _arg(bytes, signed, dvi, _):
77-
"""Read *bytes* bytes, returning the bytes interpreted as a
78-
signed integer if *signed* is true, unsigned otherwise."""
77+
"""
78+
Read *bytes* bytes, returning the bytes interpreted as a signed integer
79+
if *signed* is true, unsigned otherwise.
80+
"""
7981
return dvi._arg(bytes, signed)
8082

8183

8284
def _arg_slen(dvi, delta):
83-
"""Signed, length *delta*
85+
"""
86+
Signed, length *delta*
8487
85-
Read *delta* bytes, returning None if *delta* is zero, and
86-
the bytes interpreted as a signed integer otherwise."""
88+
Read *delta* bytes, returning None if *delta* is zero, and the bytes
89+
interpreted as a signed integer otherwise.
90+
"""
8791
if delta == 0:
8892
return None
8993
return dvi._arg(delta, True)
9094

9195

9296
def _arg_slen1(dvi, delta):
93-
"""Signed, length *delta*+1
97+
"""
98+
Signed, length *delta*+1
9499
95-
Read *delta*+1 bytes, returning the bytes interpreted as signed."""
100+
Read *delta*+1 bytes, returning the bytes interpreted as signed.
101+
"""
96102
return dvi._arg(delta+1, True)
97103

98104

99105
def _arg_ulen1(dvi, delta):
100-
"""Unsigned length *delta*+1
106+
"""
107+
Unsigned length *delta*+1
101108
102-
Read *delta*+1 bytes, returning the bytes interpreted as unsigned."""
109+
Read *delta*+1 bytes, returning the bytes interpreted as unsigned.
110+
"""
103111
return dvi._arg(delta+1, False)
104112

105113

106114
def _arg_olen1(dvi, delta):
107-
"""Optionally signed, length *delta*+1
115+
"""
116+
Optionally signed, length *delta*+1
108117
109118
Read *delta*+1 bytes, returning the bytes interpreted as
110-
unsigned integer for 0<=*delta*<3 and signed if *delta*==3."""
119+
unsigned integer for 0<=*delta*<3 and signed if *delta*==3.
120+
"""
111121
return dvi._arg(delta + 1, delta == 3)
112122

113123

@@ -122,7 +132,8 @@ def _arg_olen1(dvi, delta):
122132

123133

124134
def _dispatch(table, min, max=None, state=None, args=('raw',)):
125-
"""Decorator for dispatch by opcode. Sets the values in *table*
135+
"""
136+
Decorator for dispatch by opcode. Sets the values in *table*
126137
from *min* to *max* to this method, adds a check that the Dvi state
127138
matches *state* if not None, reads arguments from the file according
128139
to *args*.

lib/matplotlib/tests/test_colors.py

Lines changed: 31 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -592,8 +592,10 @@ def test_light_source_topo_surface():
592592

593593

594594
def test_light_source_shading_default():
595-
"""Array comparison test for the default "hsv" blend mode. Ensure the
596-
default result doesn't change without warning."""
595+
"""
596+
Array comparison test for the default "hsv" blend mode. Ensure the
597+
default result doesn't change without warning.
598+
"""
597599
y, x = np.mgrid[-1.2:1.2:8j, -1.2:1.2:8j]
598600
z = 10 * np.cos(x**2 + y**2)
599601

@@ -647,8 +649,10 @@ def test_light_source_shading_default():
647649
# additional elements being masked when calculating the gradient thus
648650
# the output is different with earlier numpy versions.
649651
def test_light_source_masked_shading():
650-
"""Array comparison test for a surface with a masked portion. Ensures that
651-
we don't wind up with "fringes" of odd colors around masked regions."""
652+
"""
653+
Array comparison test for a surface with a masked portion. Ensures that
654+
we don't wind up with "fringes" of odd colors around masked regions.
655+
"""
652656
y, x = np.mgrid[-1.2:1.2:8j, -1.2:1.2:8j]
653657
z = 10 * np.cos(x**2 + y**2)
654658

@@ -701,8 +705,10 @@ def test_light_source_masked_shading():
701705

702706

703707
def test_light_source_hillshading():
704-
"""Compare the current hillshading method against one that should be
705-
mathematically equivalent. Illuminates a cone from a range of angles."""
708+
"""
709+
Compare the current hillshading method against one that should be
710+
mathematically equivalent. Illuminates a cone from a range of angles.
711+
"""
706712

707713
def alternative_hillshade(azimuth, elev, z):
708714
illum = _sph2cart(*_azimuth2math(azimuth, elev))
@@ -730,20 +736,25 @@ def alternative_hillshade(azimuth, elev, z):
730736

731737

732738
def test_light_source_planar_hillshading():
733-
"""Ensure that the illumination intensity is correct for planar
734-
surfaces."""
739+
"""
740+
Ensure that the illumination intensity is correct for planar surfaces.
741+
"""
735742

736743
def plane(azimuth, elevation, x, y):
737-
"""Create a plane whose normal vector is at the given azimuth and
738-
elevation."""
744+
"""
745+
Create a plane whose normal vector is at the given azimuth and
746+
elevation.
747+
"""
739748
theta, phi = _azimuth2math(azimuth, elevation)
740749
a, b, c = _sph2cart(theta, phi)
741750
z = -(a*x + b*y) / c
742751
return z
743752

744753
def angled_plane(azimuth, elevation, angle, x, y):
745-
"""Create a plane whose normal vector is at an angle from the given
746-
azimuth and elevation."""
754+
"""
755+
Create a plane whose normal vector is at an angle from the given
756+
azimuth and elevation.
757+
"""
747758
elevation = elevation + angle
748759
if elevation > 90:
749760
azimuth = (azimuth + 180) % 360
@@ -775,8 +786,10 @@ def _sph2cart(theta, phi):
775786

776787

777788
def _azimuth2math(azimuth, elevation):
778-
"""Converts from clockwise-from-north and up-from-horizontal to
779-
mathematical conventions."""
789+
"""
790+
Convert from clockwise-from-north and up-from-horizontal to mathematical
791+
conventions.
792+
"""
780793
theta = np.radians((90 - azimuth) % 360)
781794
phi = np.radians(90 - elevation)
782795
return theta, phi
@@ -795,8 +808,10 @@ def test_pandas_iterable(pd):
795808

796809
@pytest.mark.parametrize('name', sorted(cm.cmap_d))
797810
def test_colormap_reversing(name):
798-
"""Check the generated _lut data of a colormap and corresponding
799-
reversed colormap if they are almost the same."""
811+
"""
812+
Check the generated _lut data of a colormap and corresponding reversed
813+
colormap if they are almost the same.
814+
"""
800815
cmap = plt.get_cmap(name)
801816
cmap_r = cmap.reversed()
802817
if not cmap_r._isinit:

lib/matplotlib/tests/test_mlab.py

Lines changed: 8 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -1561,44 +1561,38 @@ def test_single_dataset_element(self):
15611561
mlab.GaussianKDE([42])
15621562

15631563
def test_silverman_multidim_dataset(self):
1564-
"""Use a multi-dimensional array as the dataset and test silverman's
1565-
output"""
1564+
"""Test silverman's for a multi-dimensional array."""
15661565
x1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
15671566
with pytest.raises(np.linalg.LinAlgError):
15681567
mlab.GaussianKDE(x1, "silverman")
15691568

15701569
def test_silverman_singledim_dataset(self):
1571-
"""Use a single dimension list as the dataset and test silverman's
1572-
output."""
1570+
"""Test silverman's output for a single dimension list."""
15731571
x1 = np.array([-7, -5, 1, 4, 5])
15741572
mygauss = mlab.GaussianKDE(x1, "silverman")
15751573
y_expected = 0.76770389927475502
15761574
assert_almost_equal(mygauss.covariance_factor(), y_expected, 7)
15771575

15781576
def test_scott_multidim_dataset(self):
1579-
"""Use a multi-dimensional array as the dataset and test scott's output
1580-
"""
1577+
"""Test scott's output for a multi-dimensional array."""
15811578
x1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
15821579
with pytest.raises(np.linalg.LinAlgError):
15831580
mlab.GaussianKDE(x1, "scott")
15841581

15851582
def test_scott_singledim_dataset(self):
1586-
"""Use a single-dimensional array as the dataset and test scott's
1587-
output"""
1583+
"""Test scott's output a single-dimensional array."""
15881584
x1 = np.array([-7, -5, 1, 4, 5])
15891585
mygauss = mlab.GaussianKDE(x1, "scott")
15901586
y_expected = 0.72477966367769553
15911587
assert_almost_equal(mygauss.covariance_factor(), y_expected, 7)
15921588

15931589
def test_scalar_empty_dataset(self):
1594-
"""Use an empty array as the dataset and test the scalar's cov factor
1595-
"""
1590+
"""Test the scalar's cov factor for an empty array."""
15961591
with pytest.raises(ValueError):
15971592
mlab.GaussianKDE([], bw_method=5)
15981593

15991594
def test_scalar_covariance_dataset(self):
1600-
"""Use a dataset and test a scalar's cov factor
1601-
"""
1595+
"""Test a scalar's cov factor."""
16021596
np.random.seed(8765678)
16031597
n_basesample = 50
16041598
multidim_data = [np.random.randn(n_basesample) for i in range(5)]
@@ -1607,8 +1601,7 @@ def test_scalar_covariance_dataset(self):
16071601
assert kde.covariance_factor() == 0.5
16081602

16091603
def test_callable_covariance_dataset(self):
1610-
"""Use a multi-dimensional array as the dataset and test the callable's
1611-
cov factor"""
1604+
"""Test the callable's cov factor for a multi-dimensional array."""
16121605
np.random.seed(8765678)
16131606
n_basesample = 50
16141607
multidim_data = [np.random.randn(n_basesample) for i in range(5)]
@@ -1619,8 +1612,7 @@ def callable_fun(x):
16191612
assert kde.covariance_factor() == 0.55
16201613

16211614
def test_callable_singledim_dataset(self):
1622-
"""Use a single-dimensional array as the dataset and test the
1623-
callable's cov factor"""
1615+
"""Test the callable's cov factor for a single-dimensional array."""
16241616
np.random.seed(8765678)
16251617
n_basesample = 50
16261618
multidim_data = np.random.randn(n_basesample)

0 commit comments

Comments
 (0)