-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtestM.py
45 lines (37 loc) · 1.4 KB
/
testM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import scipy
# This is a set of functions to model the CSXR sightline analytically
def normM2(vals, x1, x2, ymin, yatx):
output = scipy.zeros(vals.shape)
#temp = (x1+x2)/(2*x1*x2)
F = 4*(ymin-yatx)/(x2-x1)/(x1-x2)
output = F*(vals-x1)*(vals-x2) + yatx
output[scipy.logical_or(vals < x1, vals > x2)] = 0.
return output
def normM4(vals, x1, x2, ymin, yatx):
output = scipy.zeros(vals.shape)
avg = (x1+x2)/2
diff = abs(x2-x1)
output = 16*(yatx-ymin)*pow((vals-avg)/diff,4) + ymin
output[scipy.logical_or(vals < x1, vals > x2)] = 0.
return output
def normMn(n, vals, x1, x2, ymin, yatx):
output = scipy.zeros(vals.shape)
avg = (x1+x2)/2
diff = abs(x2-x1)
output = pow(2,n)*(yatx-ymin)*pow((vals-avg)/diff,n) + ymin
output[scipy.logical_or(vals < x1, vals > x2)] = 0.
return output
def normMn2(n, vals, x1, x2, ymin):
output = scipy.zeros(vals.shape)
avg = (x1+x2)/2
diff = abs(x2-x1)
output = pow(2,n)*(1-ymin)*pow((vals-avg)/diff,n) + ymin
output[scipy.logical_or(vals < x1, vals > x2)] = 0.
output /= scipy.sum(output)
return output
def normMexp(vals, x1, x2, ymin, decay=1e0):
output = scipy.zeros(vals.shape)
idx = scipy.logical_and(vals > x1, vals < x2)
output[idx] = ymin + scipy.exp(-1*(vals[idx]-x1)/decay) + scipy.exp((vals[idx]-x2)/decay)
output /= scipy.sum(output)
return output