-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
188 lines (160 loc) · 6.04 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# main.py
from fastapi import FastAPI, File, UploadFile, HTTPException, Form, BackgroundTasks
from typing import List
import schemas # schemas.py 파일에서 정의한 모델을 import
import functions
from fastapi.responses import HTMLResponse, FileResponse
import multiprocessing
import requests
import json
import os
import time
from fastapi.middleware.cors import CORSMiddleware
origins = [
"*"
]
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True, # cookie 포함 여부를 설정한다. 기본은 False
allow_methods=["*"], # 허용할 method를 설정할 수 있으며, 기본값은 'GET'이다.
allow_headers=["*"], # 허용할 http header 목록을 설정할 수 있으며 Content-Type, Accept, Accept-Language, Content-Language은 항상 허용된다.
)
# 임시로 데이터를 저장할 딕셔너리
data = {
"models": ['test'],
"model_name": None,
"recordings": [],
"text_info": None
}
with open("/root/DeepVoice/Common_Config.json", "r") as f:
data = json.load(f)
local_address = data['local_address']
# 1. 모델 리스트 받기
@app.get("/models/")
async def get_models():
return {
"success" : 1,
"data" : {
"models":functions.ModelInfoResponse()
},
"message": "Return model list"
}
# 2. 모델 훈련 이름 정보 받기 & 녹음 파일 받기 (20개) 모델 훈련 시작하기
@app.post("/train_model/")
async def train_model(audios: List[UploadFile] = File(...), model_name: str = Form(...)):
if len(audios) < 1:
raise HTTPException(status_code=400, detail="Minimun recordings limit exceeded")
for audio_file in audios:
file_path = f"/root/DeepVoice/tracks/{audio_file.filename}"
with open(file_path, "wb") as audio_writer:
contents = await audio_file.read()
audio_writer.write(contents)
print('Train Start')
functions.train_model_function(model_name)
#send_model_to_local_server(model_name)
print('Train end')
return {
"success" : 1,
"data" : {},
"message": f"Model training start for {model_name} with {len(audios)} audio files",
}
# 3. 텍스트 정보 받기 and 모델 추론 결과 제공
@app.post("/text_info")
async def text_info(model_name: str = Form(...), text: str = Form(...), gender: str = Form(...)):
if not text:
raise HTTPException(status_code=400, detail="No text provided")
inference_data_path = functions.Inference_with_Text(model_name, text)
filename = inference_data_path.split('/')[-1]
return {
"success" : 1,
"data" : {
"inference_data" : FileResponse(inference_data_path, media_type='audio/wav', filename=filename)
},
"message": f"Model inference completed.",
}
#return FileResponse(inference_data_path, media_type='audio/wav', filename=filename)
# 4. 데이터 초기화
@app.post("/remove_data")
async def reset_data(models: str = Form(...)):
if not models:
raise HTTPException(status_code=400, detail="Missing required fields in reset data request")
if models:
functions.remove(models)
return {
"success" : 1,
"data" : {},
"message": "All {}data removed".format(models),
}
# 훈련된 모델 송신 1
def send_model_to_local_server(model_name):
pth_file_path = os.path.join('/content/Mangio-RVC-Fork/weights', model_name+'.pth')
with open(pth_file_path, "rb") as f:
pth = f.read()
index_path = f"/content/Mangio-RVC-Fork/logs/{model_name}"
index_path = os.path.join(index_path, f"added_IVF4_Flat_nprobe_1_{model_name}_v2.index")
with open(index_path, "rb") as f:
index = f.read()
files = {'pth': pth, 'index':index}
data = {"model_name" : model_name}
url = local_address+"/receive_trained_model"
response = requests.post(url, files=files, data=data)
print(response)
# 5. 훈련된 모델 수신
@app.post("/receive_trained_model")
async def receive_trained_model(pth: UploadFile = Form(...), index: UploadFile = Form(...), model_name: str = Form(...)):
print(index.filename)
pth_file_path = os.path.join('/content/Mangio-RVC-Fork/weights', model_name+'.pth')
with open(pth_file_path, "wb") as f:
contents = await pth.read()
f.write(contents)
index_path = f"/content/Mangio-RVC-Fork/logs/{model_name}"
os.makedirs(index_path, exist_ok=True)
index_path = os.path.join(index_path, f"added_IVF4_Flat_nprobe_1_{model_name}_v2.index")
with open(index_path, "wb") as f:
contents = await index.read()
f.write(contents)
return {
"success" : 1,
"data" : {},
"message": "Model received"
}
@app.get("/get_audio/")
async def receive_trained_model(model_name: str):
path = '/content/dataset_Infer'
filename = model_name+'.wav'
audio_path = os.path.join(path, filename)
if not os.path.isfile(audio_path):
raise HTTPException(status_code=400, detail="file not found")
return FileResponse(audio_path, media_type='audio/wav', filename=filename)
@app.get("/")
async def main():
content = """
<body>
<form action="/models/" enctype="multipart/form-data" method="get">
<input type="submit">
</form>
<form action="/train_model/" enctype="multipart/form-data" method="post">
<input name="audios" type="file" multiple>
<input name="model_name" type="text">
<input type="submit">
</form>
<form action="/text_info/" enctype="multipart/form-data" method="post">
<input name="model_name" type="text">
<input name="text" type="text">
<input name="gender" type="int">
<input type="submit">
</form>
</form>
<form action="/remove_data/" enctype="multipart/form-data" method="post">
<input name="models" type="text">
<input type="submit">
</form>
</body>
"""
return HTMLResponse(content=content)
if __name__ == "__main__":
import uvicorn
#uvicorn.run(app, host="0.0.0.0", port= 8000)
#uvicorn.run(app, host="0.0.0.0", port= 10000)