-
Notifications
You must be signed in to change notification settings - Fork 1.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #26860 from joshuahansel/th-page
Added a thermal hydraulics applications page
- Loading branch information
Showing
2 changed files
with
134 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,131 @@ | ||
# Thermal Hydraulics | ||
|
||
## MOOSE Modules for Thermal Hydraulics Modeling | ||
|
||
MOOSE includes modules providing versatile, general-purpose thermal hydraulics capabilities. Collectively, these modules solve for mass, momentum, energy, and species conservation in multicomponent, multiphase flows using incompressible, weakly-compressible, or fully compressible formulations for steady-state or transient calculations in 1D, 2D, or 3D geometries. These capabilities range in fidelity and computational expense, as illustrated in [TH_Scales]. | ||
|
||
!media thermal_hydraulics/misc/TH_scales_new.png | ||
style=width:50%;display:block;margin-left:auto;margin-right:auto; | ||
caption=MOOSE modules support from Reynolds-Average Navier Stokes (RANS) Computational Fluid Dynamics (CFD) modeling to 0D lumped-parameters modeling. | ||
id=TH_Scales | ||
|
||
The following table summarizes the MOOSE modules providing thermal hydraulics capabilities. | ||
The "Typical Runtime" column corresponds to a rough estimate of how much time it takes | ||
to run 100 time steps for a problem with the number of elements equal to the "Typical Element Count" | ||
value, using serial execution of the application. | ||
|
||
| Module | Scale | Flow-Formulation | Dimension | Typical Element Count | Typical Runtime | Typical Simulations | | ||
| :---------------------------------------------------------------------- | :------------------------------------- | :----------------------------------------------------------------------------------------------------------------------------------------------------------- | :----------------------------------------------------------------- | :-------------------- | :-------------- | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | ||
| [Navier-Stokes](navier_stokes/index.md) | Coarse-Mesh CFD \\ \\ RANS simulations | Incompressible, Weakly-Compressible, or Fully-Compressible\\ \\ Single- or Multi-Phase \\ \\ Single- or Multi-Component Flow | Typically, 2D, 2D axisymmetric, or 3D \\ \\ Can also be used in 1D | 10,000 | 1 minute | Flow through nuclear reactor core or plena \\ \\ 3D multi-phase flow in pipes \\ \\ Natural convection flow in open cavities | | ||
| [Subchannel](https://subchannel-dev.hpc.inl.gov/site/index.html) (To be released in 2024) | Subchannel Scale | Incompressible or Weakly-Compressible \\ \\ Single-Phase \\ \\ Single- or Multi-Component Flow | 3D | 100,000 | 10 seconds | Flow development through nuclear reactor fuel assembly \\ \\ Thermal hydraulics analysis of nuclear reactor assembly blockage \\ \\ Natural convection cooling in nuclear reactors low-flow assemblies | | ||
| [Thermal Hydraulics](modules/thermal_hydraulics/index.md) | Lumped-Parameters Simulations | Compressible \\ \\ Single-Phase; Single-Component Flow | 1D, 0D | 100 | 10 seconds | Heat extraction unit from nuclear reactor core \\ \\ Thermal loops with significant compressibility effects | | ||
| [Porous Flow Module](modules/porous_flow/index.md) | Coarse-Mesh CFD | Incompressible, Weakly-Compressible, or Fully-Compressible Porous Flow (no inertial term) \\ \\ Single- or Multi-Phase \\ \\ Single- or Multi-Component Flow | Typically, 2D, 2D axisymmetric, or 3D \\ \\ Can also be used in 1D | 10,000 | 1 minute | Flow through fractured porous media \\ \\ Underground coal mining \\ \\ CO storage in saline aquifers | | ||
|
||
## MOOSE-Based Applications for Thermal Hydraulics Modeling | ||
|
||
Here we note a selection of MOOSE-based thermal hydraulics applications, which | ||
are developed as part of the | ||
[Nuclear Energy Advanced Modeling and Simulation (NEAMS) program](https://neams.inl.gov/). | ||
Some of these applications are open-source, whereas some are export-controlled | ||
and distributed via the [Nuclear Computational Resource Center (NCRC)](https://inl.gov/ncrc/); | ||
see [help/inl/applications.md] for more information. | ||
|
||
| Application Name | Distribution | Based On | Added Features | | ||
| :------------------------------------------------------------- | :----------- | :------------------------ | :----------------------------------------------------------------------------------------------------------------------------------------------------- | | ||
| [Cardinal](https://cardinal.cels.anl.gov/) | [Open-source](https://github.com/neams-th-coe/cardinal) | [NekRS](https://github.com/Nek5000/nekRS) CFD | CPU and GPU capabilities for RANS, LES, and DNS. Additional features include Lagrangian particle transport, an ALE mesh solver, overset meshes, and more. | | ||
| Pronghorn | [NCRC](https://inl.gov/ncrc/) | Navier-Stokes Module | Export-controlled correlations for pressure drop, heat exchange, and mass transfer in advanced nuclear reactors. | | ||
| [SAM](https://www.anl.gov/nse/system-analysis-module) | [NCRC](https://inl.gov/ncrc/) | MOOSE Framework | Additional physics and component models for realistic plant modeling and reactor safety analysis. | | ||
| RELAP-7 | [NCRC](https://inl.gov/ncrc/) | Thermal Hydraulics Module | Two-phase flow model and component models with additional closures appropriate for LWRs. | | ||
| Sockeye | [NCRC](https://inl.gov/ncrc/) | Thermal Hydraulics Module | Adapted correlations and specific 1D and 2D models for high-temperature heat pipes. | | ||
|
||
## Examples Gallery | ||
|
||
!row! | ||
!col! small=4 medium=4 large=4 | ||
|
||
### Molten Salt Reactors | ||
|
||
!media thermal_hydraulics/misc/example_msr.png | ||
style=width:90%;display:block;margin-left:auto;margin-right:auto; | ||
caption=RANS simulation of conjugated heat transfer in a pool-type molten salt reactor concept using the MOOSE Navier-Stokes module. | ||
id=mcre | ||
|
||
!media thermal_hydraulics/misc/example_msre.png | ||
style=width:90%;display:block;margin-left:auto;margin-right:auto; | ||
caption=Power density (left), fuel temperature (center), and void fraction distribution (right) during the steady-state operation of the Molten Salt Reactor Experiment using the MOOSE Navier-Stokes module RANS simulation. | ||
id=msre | ||
|
||
!col-end! | ||
|
||
!col! small=4 medium=4 large=4 | ||
|
||
### High Temperature Reactors | ||
|
||
!media thermal_hydraulics/misc/example_httf.png | ||
style=width:90%;display:block;margin-left:auto;margin-right:auto; | ||
caption=Steady-state operation of Oregon State University's High Temperature Test Facility (HTTF) using the MOOSE Navier-Stokes module coarse-mesh CFD capability. | ||
id=httf | ||
|
||
!media thermal_hydraulics/misc/example_httr.png | ||
style=width:90%;display:block;margin-left:auto;margin-right:auto; | ||
caption=Temperature in fuel blocks of the High-Temperature Engineering Test Reactor (HTTR) during steady-state operation using the MOOSE Thermal Hydraulics Module (THM). | ||
id=httr | ||
|
||
!col-end! | ||
|
||
!col! small=4 medium=4 large=4 | ||
|
||
### Liquid-Metal cooled Reactors | ||
|
||
!media thermal_hydraulics/misc/example_subchannel.png | ||
style=width:90%;display:block;margin-left:auto;margin-right:auto; | ||
caption=Steady-state operation of a fuel assembly in a liquid-metal-cooled reactor using the Subchannel Module. | ||
id=subchannel | ||
|
||
!media thermal_hydraulics/misc/example_subchannel_lf.png | ||
style=width:90%;display:block;margin-left:auto;margin-right:auto; | ||
caption=Simulation of internal recirculation in low-flow assemblies of a sodium-cooled fast reactor driven by natural convection, conducted using the Subchannel Module. | ||
id=subcnahhel_lf | ||
|
||
!col-end! | ||
|
||
!col! small=4 medium=4 large=4 | ||
|
||
### Two-Phase Flow | ||
|
||
!media thermal_hydraulics/misc/example_rayleigh_benard.png | ||
style=width:90%;display:block;margin-left:auto;margin-right:auto; | ||
caption=Two-phase Rayleigh-Benard convection in a 3D cavity using the drift-flux mixture model in the Navier-Stokes module, where the flow boils at the bottom plate and condenses at the top plate. | ||
id=rayleigh_benard | ||
|
||
!media thermal_hydraulics/misc/example_two_phase_channel.png | ||
style=width:90%;display:block;margin-left:auto;margin-right:auto; | ||
caption=Two-phase flow stratification in a flow bed using the MOOSE Navier-Stokes module Euler-Euler capabilities, illustrating phase-fraction (top), phase-specific velocities (center), and pressure (bottom). | ||
id=two_phase_channel | ||
|
||
!col-end! | ||
|
||
!col! small=4 medium=4 large=4 | ||
|
||
### Laser Welding | ||
|
||
!media thermal_hydraulics/misc/example_laser_weld.png | ||
style=width:90%;display:block;margin-left:auto;margin-right:auto; | ||
caption=Melt-pool evaluation during laser welding, simulated using the MOOSE Navier-Stokes module. | ||
id=laser_weld | ||
|
||
!col-end! | ||
|
||
!col! small=4 medium=4 large=4 | ||
|
||
### Corrosion and Erosion | ||
|
||
!media thermal_hydraulics/misc/example_corrosion.png | ||
style=width:90%;display:block;margin-left:auto;margin-right:auto; | ||
caption=Prediction of critical spots for corrosion and erosion in a double-elbow pipe using the MOOSE Navier-Stokes module. | ||
id=corrosion | ||
|
||
!col-end! | ||
|
||
!row-end! | ||
|