|
| 1 | +# Thermal Hydraulics |
| 2 | + |
| 3 | +## MOOSE Modules for Thermal Hydraulics Modeling |
| 4 | + |
| 5 | +MOOSE includes modules providing versatile, general-purpose thermal hydraulics capabilities. Collectively, these modules solve for mass, momentum, energy, and species conservation in multicomponent, multiphase flows using incompressible, weakly-compressible, or fully compressible formulations for steady-state or transient calculations in 1D, 2D, or 3D geometries. These capabilities range in fidelity and computational expense, as illustrated in [TH_Scales]. |
| 6 | + |
| 7 | +!media thermal_hydraulics/misc/TH_scales_new.png |
| 8 | + style=width:50%;display:block;margin-left:auto;margin-right:auto; |
| 9 | + caption=MOOSE modules support from Reynolds-Average Navier Stokes (RANS) Computational Fluid Dynamics (CFD) modeling to 0D lumped-parameters modeling. |
| 10 | + id=TH_Scales |
| 11 | + |
| 12 | +The following table summarizes the MOOSE modules providing thermal hydraulics capabilities. |
| 13 | +The "Typical Runtime" column corresponds to a rough estimate of how much time it takes |
| 14 | +to run 100 time steps for a problem with the number of elements equal to the "Typical Element Count" |
| 15 | +value, using serial execution of the application. |
| 16 | + |
| 17 | +| Module | Scale | Flow-Formulation | Dimension | Typical Element Count | Typical Runtime | Typical Simulations | |
| 18 | +| :---------------------------------------------------------------------- | :------------------------------------- | :----------------------------------------------------------------------------------------------------------------------------------------------------------- | :----------------------------------------------------------------- | :-------------------- | :-------------- | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | |
| 19 | +| [Navier-Stokes](navier_stokes/index.md) | Coarse-Mesh CFD \\ \\ RANS simulations | Incompressible, Weakly-Compressible, or Fully-Compressible\\ \\ Single- or Multi-Phase \\ \\ Single- or Multi-Component Flow | Typically, 2D, 2D axisymmetric, or 3D \\ \\ Can also be used in 1D | 10,000 | 1 minute | Flow through nuclear reactor core or plena \\ \\ 3D multi-phase flow in pipes \\ \\ Natural convection flow in open cavities | |
| 20 | +| [Subchannel](https://subchannel-dev.hpc.inl.gov/site/index.html) (To be released in 2024) | Subchannel Scale | Incompressible or Weakly-Compressible \\ \\ Single-Phase \\ \\ Single- or Multi-Component Flow | 3D | 100,000 | 10 seconds | Flow development through nuclear reactor fuel assembly \\ \\ Thermal hydraulics analysis of nuclear reactor assembly blockage \\ \\ Natural convection cooling in nuclear reactors low-flow assemblies | |
| 21 | +| [Thermal Hydraulics](modules/thermal_hydraulics/index.md) | Lumped-Parameters Simulations | Compressible \\ \\ Single-Phase; Single-Component Flow | 1D, 0D | 100 | 10 seconds | Heat extraction unit from nuclear reactor core \\ \\ Thermal loops with significant compressibility effects | |
| 22 | +| [Porous Flow Module](modules/porous_flow/index.md) | Coarse-Mesh CFD | Incompressible, Weakly-Compressible, or Fully-Compressible Porous Flow (no inertial term) \\ \\ Single- or Multi-Phase \\ \\ Single- or Multi-Component Flow | Typically, 2D, 2D axisymmetric, or 3D \\ \\ Can also be used in 1D | 10,000 | 1 minute | Flow through fractured porous media \\ \\ Underground coal mining \\ \\ CO storage in saline aquifers | |
| 23 | + |
| 24 | +## MOOSE-Based Applications for Thermal Hydraulics Modeling |
| 25 | + |
| 26 | +Here we note a selection of MOOSE-based thermal hydraulics applications, which |
| 27 | +are developed as part of the |
| 28 | +[Nuclear Energy Advanced Modeling and Simulation (NEAMS) program](https://neams.inl.gov/). |
| 29 | +Some of these applications are open-source, whereas some are export-controlled |
| 30 | +and distributed via the [Nuclear Computational Resource Center (NCRC)](https://inl.gov/ncrc/); |
| 31 | +see [help/inl/applications.md] for more information. |
| 32 | + |
| 33 | +| Application Name | Distribution | Based On | Added Features | |
| 34 | +| :------------------------------------------------------------- | :----------- | :------------------------ | :----------------------------------------------------------------------------------------------------------------------------------------------------- | |
| 35 | +| [Cardinal](https://cardinal.cels.anl.gov/) | [Open-source](https://github.com/neams-th-coe/cardinal) | [NekRS](https://github.com/Nek5000/nekRS) CFD | CPU and GPU capabilities for RANS, LES, and DNS. Additional features include Lagrangian particle transport, an ALE mesh solver, overset meshes, and more. | |
| 36 | +| Pronghorn | [NCRC](https://inl.gov/ncrc/) | Navier-Stokes Module | Export-controlled correlations for pressure drop, heat exchange, and mass transfer in advanced nuclear reactors. | |
| 37 | +| [SAM](https://www.anl.gov/nse/system-analysis-module) | [NCRC](https://inl.gov/ncrc/) | MOOSE Framework | Additional physics and component models for realistic plant modeling and reactor safety analysis. | |
| 38 | +| RELAP-7 | [NCRC](https://inl.gov/ncrc/) | Thermal Hydraulics Module | Two-phase flow model and component models with additional closures appropriate for LWRs. | |
| 39 | +| Sockeye | [NCRC](https://inl.gov/ncrc/) | Thermal Hydraulics Module | Adapted correlations and specific 1D and 2D models for high-temperature heat pipes. | |
| 40 | + |
| 41 | +## Examples Gallery |
| 42 | + |
| 43 | +!row! |
| 44 | +!col! small=4 medium=4 large=4 |
| 45 | + |
| 46 | +### Molten Salt Reactors |
| 47 | + |
| 48 | +!media thermal_hydraulics/misc/example_msr.png |
| 49 | + style=width:90%;display:block;margin-left:auto;margin-right:auto; |
| 50 | + caption=RANS simulation of conjugated heat transfer in a pool-type molten salt reactor concept using the MOOSE Navier-Stokes module. |
| 51 | + id=mcre |
| 52 | + |
| 53 | +!media thermal_hydraulics/misc/example_msre.png |
| 54 | + style=width:90%;display:block;margin-left:auto;margin-right:auto; |
| 55 | + caption=Power density (left), fuel temperature (center), and void fraction distribution (right) during the steady-state operation of the Molten Salt Reactor Experiment using the MOOSE Navier-Stokes module RANS simulation. |
| 56 | + id=msre |
| 57 | + |
| 58 | +!col-end! |
| 59 | + |
| 60 | +!col! small=4 medium=4 large=4 |
| 61 | + |
| 62 | +### High Temperature Reactors |
| 63 | + |
| 64 | +!media thermal_hydraulics/misc/example_httf.png |
| 65 | + style=width:90%;display:block;margin-left:auto;margin-right:auto; |
| 66 | + caption=Steady-state operation of Oregon State University's High Temperature Test Facility (HTTF) using the MOOSE Navier-Stokes module coarse-mesh CFD capability. |
| 67 | + id=httf |
| 68 | + |
| 69 | +!media thermal_hydraulics/misc/example_httr.png |
| 70 | + style=width:90%;display:block;margin-left:auto;margin-right:auto; |
| 71 | + caption=Temperature in fuel blocks of the High-Temperature Engineering Test Reactor (HTTR) during steady-state operation using the MOOSE Thermal Hydraulics Module (THM). |
| 72 | + id=httr |
| 73 | + |
| 74 | +!col-end! |
| 75 | + |
| 76 | +!col! small=4 medium=4 large=4 |
| 77 | + |
| 78 | +### Liquid-Metal cooled Reactors |
| 79 | + |
| 80 | +!media thermal_hydraulics/misc/example_subchannel.png |
| 81 | + style=width:90%;display:block;margin-left:auto;margin-right:auto; |
| 82 | + caption=Steady-state operation of a fuel assembly in a liquid-metal-cooled reactor using the Subchannel Module. |
| 83 | + id=subchannel |
| 84 | + |
| 85 | +!media thermal_hydraulics/misc/example_subchannel_lf.png |
| 86 | + style=width:90%;display:block;margin-left:auto;margin-right:auto; |
| 87 | + caption=Simulation of internal recirculation in low-flow assemblies of a sodium-cooled fast reactor driven by natural convection, conducted using the Subchannel Module. |
| 88 | + id=subcnahhel_lf |
| 89 | + |
| 90 | +!col-end! |
| 91 | + |
| 92 | +!col! small=4 medium=4 large=4 |
| 93 | + |
| 94 | +### Two-Phase Flow |
| 95 | + |
| 96 | +!media thermal_hydraulics/misc/example_rayleigh_benard.png |
| 97 | + style=width:90%;display:block;margin-left:auto;margin-right:auto; |
| 98 | + caption=Two-phase Rayleigh-Benard convection in a 3D cavity using the drift-flux mixture model in the Navier-Stokes module, where the flow boils at the bottom plate and condenses at the top plate. |
| 99 | + id=rayleigh_benard |
| 100 | + |
| 101 | +!media thermal_hydraulics/misc/example_two_phase_channel.png |
| 102 | + style=width:90%;display:block;margin-left:auto;margin-right:auto; |
| 103 | + caption=Two-phase flow stratification in a flow bed using the MOOSE Navier-Stokes module Euler-Euler capabilities, illustrating phase-fraction (top), phase-specific velocities (center), and pressure (bottom). |
| 104 | + id=two_phase_channel |
| 105 | + |
| 106 | +!col-end! |
| 107 | + |
| 108 | +!col! small=4 medium=4 large=4 |
| 109 | + |
| 110 | +### Laser Welding |
| 111 | + |
| 112 | +!media thermal_hydraulics/misc/example_laser_weld.png |
| 113 | + style=width:90%;display:block;margin-left:auto;margin-right:auto; |
| 114 | + caption=Melt-pool evaluation during laser welding, simulated using the MOOSE Navier-Stokes module. |
| 115 | + id=laser_weld |
| 116 | + |
| 117 | +!col-end! |
| 118 | + |
| 119 | +!col! small=4 medium=4 large=4 |
| 120 | + |
| 121 | +### Corrosion and Erosion |
| 122 | + |
| 123 | +!media thermal_hydraulics/misc/example_corrosion.png |
| 124 | + style=width:90%;display:block;margin-left:auto;margin-right:auto; |
| 125 | + caption=Prediction of critical spots for corrosion and erosion in a double-elbow pipe using the MOOSE Navier-Stokes module. |
| 126 | + id=corrosion |
| 127 | + |
| 128 | +!col-end! |
| 129 | + |
| 130 | +!row-end! |
| 131 | + |
0 commit comments