-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbaselines-basic.py
215 lines (166 loc) · 7.79 KB
/
baselines-basic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# -*- coding: utf-8 -*-
"""
Script for running simple baselines experiments with optuna optimization.
Copyright (c) 2023 Idiap Research Institute
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
@author: Sergio Burdisso ([email protected])
"""
import os
import optuna
import warnings
import argparse
import itertools
from sklearn.metrics import classification_report
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_selection import SelectFromModel
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.feature_selection import SelectKBest, f_classif
SEED = 17
PATH_OUTPUT = 'output'
TARGET_METRIC = "f1-score"
FEATURE_VECTORIZER_ARGS = {"stop_words": "english"} # TfidfVectorizer args
# Hyperparameter search
HP_N_TRIALS = 100
HP_RANGE_LR = [1e-7, 1e-3]
HP_RANGE_STEPS = [50, 10000]
OPTUNA_STORAGE = "sqlite:///db_baselines.sqlite3"
MODELS = {"LR": LogisticRegression, "SVM": SVC}
DATASETS = ["AVEC_16_data", "AVEC_19_data", "AVEC_19_data-dev"]
FEATURES = [0, -1, 100, 250, 500, 1000, 1500] # 0 no feature selection; -1 auto. feature selection; n top-n feature selection
MODELS_NAMES = sorted(list(MODELS.keys()))
OPTIONS = list(itertools.product(DATASETS, MODELS_NAMES, FEATURES))
OPTIONS_N = len(OPTIONS)
def get_task_info(option, only_description=False):
dataset, model, feature_size = option
if feature_size == 0:
feature_selection = False
else:
feature_selection = True
study_name = f"({dataset}){model}[features{feature_size}]"
feature_str = 'all' if not feature_selection else ('auto' if feature_size == -1 else f'top-{feature_size}')
dataset_str = f"{dataset[:7]} (eval on {'test' if dataset == 'AVEC_19_data' else 'dev'}set)"
option_description = f"Dataset={dataset_str}; Model: {model}; Features={feature_str};"
if only_description:
return option_description
return dataset, model, feature_size, feature_selection, study_name, option_description
parser = argparse.ArgumentParser()
parser.add_argument("-i", "--task-id", help="The task id to be run", default=-1, required=False, type=int)
args = parser.parse_args()
if args.task_id < 0:
print(f"\nThere's a total of {OPTIONS_N} task options. List by task id:")
for ix, op in enumerate(OPTIONS):
print(f" {ix + 1}.", get_task_info(op, only_description=True))
print()
exit()
elif args.task_id is not None:
if 0 < args.task_id <= OPTIONS_N:
task_ix = args.task_id - 1
else:
raise ValueError(f"argument --task-id must be a valid task id (i.e. integer between 1 and {OPTIONS_N})")
elif os.getenv('SGE_TASK_ID') is not None:
task_ix = int(os.getenv('SGE_TASK_ID')) - 1
print(f"(JOB with index {task_ix} will run task {id})")
else:
print("(No task id was provided, using the first one as default)")
task_ix = 0
DATASET, MODEL, FEATURE_SIZE, FEATURE_SELECTION, STUDY_NAME, description = get_task_info(OPTIONS[task_ix])
print(f"\nSelected option to run is {task_ix + 1}.")
print(" Task description:", description)
print(f" Optuna study name: '{STUDY_NAME}'\n")
PATH_TRAIN = f"data/{DATASET}/train_all_data.txt"
PATH_DEV = f"data/{DATASET}/test_all_data.txt"
PATH_TEST = ''
if DATASET.endswith("-dev"):
PATH_TRAIN = f"data/{DATASET[:-4]}/train_all_data.txt"
PATH_DEV = f"data/{DATASET[:-4]}/devel_all_data.txt"
PATH_TEST = f"data/{DATASET[:-4]}/test_all_data.txt"
warnings.filterwarnings('ignore')
def load_dataset(path, label2ix=None):
with open(path, 'r') as f:
f_lines = f.read().split('\n')
data = [(line.split('\t')[0], line.split('\t')[1]) for line in f_lines if line]
document_labels = [label for label, _ in data]
documents = [doc for _, doc in data]
labels = sorted(list(set(document_labels)))
ix2label = {}
if label2ix is None:
label2ix = {}
for label in labels:
label2ix[label] = len(label2ix)
ix2label[label2ix[label]] = label
y = [label2ix[lbl] for lbl in document_labels]
return documents, y, ix2label, label2ix
def train_and_eval(c, penalty, class_weight, print_results=False):
FEATURE_VECTORIZER_ARGS["vocabulary"] = None
doc_vectorizer = TfidfVectorizer(**FEATURE_VECTORIZER_ARGS)
if FEATURE_SELECTION:
doc_vectorizer.fit(X_train)
vocab = doc_vectorizer.get_feature_names_out()
print("Original vocab size:", len(vocab))
if FEATURE_SIZE == -1:
estimator = LogisticRegression(class_weight='balanced', dual=False,
fit_intercept=True, penalty='none',
solver='newton-cg', random_state=SEED, n_jobs=-1)
selector = SelectFromModel(estimator=estimator).fit(doc_vectorizer.transform(X_train), y_train)
else:
selector = SelectKBest(f_classif, k=FEATURE_SIZE).fit(doc_vectorizer.transform(X_train), y_train)
support = selector.get_support()
vocab = [vocab[i] for i in range(len(vocab)) if support[i]]
print("Vocab size after feature selection:", len(vocab))
FEATURE_VECTORIZER_ARGS["vocabulary"] = vocab
doc_vectorizer = TfidfVectorizer(**FEATURE_VECTORIZER_ARGS)
if MODEL == "LR":
clf = MODELS[MODEL](C=c, class_weight=class_weight, penalty=penalty, random_state=SEED, n_jobs=-1)
else:
clf = MODELS[MODEL](C=c, class_weight=class_weight, random_state=SEED)
clf.fit(doc_vectorizer.fit_transform(X_train), y_train)
y_pred = clf.predict(doc_vectorizer.transform(X_dev)).tolist()
result = classification_report(y_dev, y_pred, target_names=labels, zero_division=0, output_dict=not print_results)
if print_results:
print(result)
else:
return result[TARGET_METRIC] if TARGET_METRIC == 'accuracy' else result["macro avg"][TARGET_METRIC]
if __name__ == "__main__":
os.makedirs(PATH_OUTPUT, exist_ok=True)
X_train, y_train, ix2label, label2ix = load_dataset(PATH_TRAIN)
X_dev, y_dev, _, _ = load_dataset(PATH_DEV, label2ix=label2ix)
n_labels = len(ix2label)
labels = [ix2label[ix] for ix in range(n_labels)]
best_metric = float("-inf") # https://github.com/optuna/optuna/issues/2575
def objective(trial):
global best_metric
penalty = trial.suggest_categorical("penalty", ['l2', 'none']) if MODEL == "LR" else None
current_metric = train_and_eval(
trial.suggest_float("C", 0.001, 10, log=True),
penalty,
trial.suggest_categorical("class_weight", ['balanced', None])
)
if current_metric > best_metric:
best_metric = current_metric
return best_metric
study = optuna.create_study(
storage=OPTUNA_STORAGE,
pruner=optuna.pruners.NopPruner(),
study_name=STUDY_NAME,
direction="maximize",
load_if_exists=True)
study.optimize(objective, n_trials=HP_N_TRIALS)
train_and_eval(
study.best_params["C"],
study.best_params["penalty"] if "penalty" in study.best_params else 0,
study.best_params["class_weight"],
print_results=True
)
study.set_user_attr("model", MODEL.upper())
study.set_user_attr("dataset", DATASET)
study.set_user_attr("features selection", "all" if not FEATURE_SELECTION else ("auto" if FEATURE_SIZE == -1 else f"top-{FEATURE_SIZE}"))
study.set_user_attr(f"best {TARGET_METRIC}", study.best_value)