-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathstrategy_detections.py
82 lines (70 loc) · 3.48 KB
/
strategy_detections.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import pandas as pd
import numpy as np
from scipy import interpolate
def detections_non_detections(strategies, t, delay_hr, offset_filt_hr=0):
"""Prints the detections and non-detections for each strategy in a structured table format."""
# For each strategy, create a structured table (DataFrame) for detections and non-detections
strategy_names = list(strategies.keys())
for i in range(len(strategy_names)):
print(f"\nStrategy name: {strategy_names[i]}")
# Epochs of the strategy in days
days_strategy = np.array(strategies[strategy_names[i]]["cadence_hr"]) / 24
depths_strategy = strategies[strategy_names[i]]["depths"]
filters_strategy = strategies[strategy_names[i]]["filters"]
# Initialize detections and non-detections as lists to populate the DataFrame later
detection_data = []
non_detection_data = []
# Initialize the possible time offset by filter
offset_filt_hr_tot = 0
for filt in t.colnames:
# Ignore anything not LSST
if filt[0] != "l":
continue
# Ignore time column
if filt == "t[days]":
continue
# Add the offset by filter
offset_filt_hr_tot += offset_filt_hr
# Interpolate to reduce noise
idx = [i for i in np.arange(len(t)) if not np.isnan(t[filt][i])]
idx = [i for i in idx if not t[filt][i] == np.inf]
f = interpolate.interp1d(t["t[days]"][idx], t[filt][idx])
# For each epoch, check if there is the given filter
for day_strategy, filter_strategy, depth_strategy_epoch in zip(days_strategy, filters_strategy, depths_strategy):
# Apply the delay between the event and the obs. window
day_strategy += delay_hr / 24 # from hours to days
# Apply a delay between filters to show overlapping points
day_strategy += offset_filt_hr_tot / 24
if not (filt.replace('lsst', '') in filter_strategy):
continue
else:
# Find depth for the given filter
idx = filter_strategy.index(filt.replace('lsst', ''))
depth = depth_strategy_epoch[idx]
# Detection or non-detection?
if f(day_strategy) <= depth:
detection_data.append({
'Filter': filt.replace('lsst', ''),
'Day': day_strategy,
'Magnitude': f(day_strategy)
})
else:
non_detection_data.append({
'Filter': filt.replace('lsst', ''),
'Day': day_strategy,
'Limiting Magnitude': depth
})
# Convert detections and non-detections to DataFrames
detections_df = pd.DataFrame(detection_data)
non_detections_df = pd.DataFrame(non_detection_data)
# Print the results in a structured DataFrame format
print("\nDetections:")
if not detections_df.empty:
print(detections_df.to_string(index=False))
else:
print("No detections.")
print("\nNon-Detections:")
if not non_detections_df.empty:
print(non_detections_df.to_string(index=False))
else:
print("No non-detections.")