-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathParameters_step1.R
234 lines (166 loc) · 6.62 KB
/
Parameters_step1.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
options(warn=-1)
options(scipen=999)
set.seed(07031992)
suppressPackageStartupMessages(library(VGAM))
suppressPackageStartupMessages(library(data.table))
suppressPackageStartupMessages(library(argparse))
# Variant calling functions
# FUNCTION
estBetaParams <- function(mu, var) {
alpha <- ((1 - mu) / var - 1 / mu) * mu ^ 2
beta <- alpha * (1 / mu - 1)
return(params = list(alpha = alpha, beta = beta))
}
MODEL_BETABIN_DP_DP <- function(DATA){
result <- tryCatch({mle2(ALT_COUNT~dbetabinom.ab(size=DP_HQ,shape1,shape2),
data=DATA,
method="Nelder-Mead",
skip.hessian=TRUE,
start=list(shape1=1,shape2=round(mean(DATA$DP_HQ))),
control=list(maxit=1000))},
error = function(e) {(estBetaParams(mean(DATA$ALT_COUNT/DATA$DP_HQ, na.rm = T),var(DATA$ALT_COUNT/DATA$DP_HQ, na.rm = T)))})
PARAM1 <- ifelse(is.null(coef(result)[[1]]),result[[1]], coef(result)[[1]])
PARAM2 <- ifelse(is.null(coef(result)[[2]]),result[[2]], coef(result)[[2]])
return (c(PARAM1, PARAM2))
}
SAMPLE <- function(TD){
NUCLEOTIDES <- c('A','C','T','G', 'INS', 'INSo', 'DEL', 'DELo')
# Training set
CONTROL <- TD
CONTROL$ALT_COUNT <- rowSums(CONTROL[,NUCLEOTIDES])-CONTROL$REFf-CONTROL$REFr
CONTROL$DP_HQ <- rowSums(CONTROL[,NUCLEOTIDES])
CONTROL$AB <- CONTROL$ALT_COUNT/CONTROL$DP_HQ
CONTROL <- CONTROL[CONTROL$AB < 0.1 & CONTROL$DP_HQ >= 10 & CONTROL$ALT_COUNT >= 0,] # Focusing only to non-germline sites
if (nrow(CONTROL) > 500000) {
CONTROL <- CONTROL[sample(nrow(CONTROL), 500000),]
} else {
CONTROL <- CONTROL[sample(nrow(CONTROL), 500000, replace = T),]
}
CONTROL <- CONTROL[CONTROL$AB < 0.1 & CONTROL$DP_HQ >= 10,]
return(CONTROL)
}
PARAMS <- function(CONTROL){
## ONLY INCLUDING VARIANTS BUT INDELS SEPARATED
# Calculate indels
Indel <- c('INS', 'INSo', 'DEL', 'DELo')
CONTROL$Indel <- rowSums(CONTROL[,Indel])
# Reference bases
CONTROL_T <- CONTROL[CONTROL$REF == 'T',]
CONTROL_A <- CONTROL[CONTROL$REF == 'A',]
CONTROL_G <- CONTROL[CONTROL$REF == 'G',]
CONTROL_C <- CONTROL[CONTROL$REF == 'C',]
COLNAMES <- c('DP_HQ','ALT_COUNT')
# T>G | A>C
TG <- CONTROL_T[,c('DP_HQ','G')]
colnames(TG) <- COLNAMES
AC <- CONTROL_A[,c('DP_HQ','C')]
colnames(AC) <- COLNAMES
CONTROL_TG <- rbind(TG, AC)
# T>A | A>T
TA <- CONTROL_T[,c('DP_HQ','A')]
colnames(TA) <- COLNAMES
AT <- CONTROL_A[,c('DP_HQ','T')]
colnames(AT) <- COLNAMES
CONTROL_TA <- rbind(TA, AT)
# T>C | A>G
TC <- CONTROL_T[,c('DP_HQ','C')]
colnames(TC) <- COLNAMES
AG <- CONTROL_A[,c('DP_HQ','G')]
colnames(AG) <- COLNAMES
CONTROL_TC <- rbind(TC, AG)
# G>T | C>A
GT <- CONTROL_G[,c('DP_HQ','T')]
colnames(GT) <- COLNAMES
CA <- CONTROL_C[,c('DP_HQ','A')]
colnames(CA) <- COLNAMES
CONTROL_GT <- rbind(GT, CA)
# G>A | C>T
GA <- CONTROL_G[,c('DP_HQ','A')]
colnames(GA) <- COLNAMES
CT <- CONTROL_C[,c('DP_HQ','T')]
colnames(CT) <- COLNAMES
CONTROL_GA <- rbind(GA, CT)
# G>C | C>G
GC <- CONTROL_G[,c('DP_HQ','C')]
colnames(GC) <- COLNAMES
CG <- CONTROL_C[,c('DP_HQ','G')]
colnames(CG) <- COLNAMES
CONTROL_GC <- rbind(GC, CG)
## For indels
# A>Indel | T>Indel
AIndel <- CONTROL_A[,c('DP_HQ','Indel')]
colnames(AIndel) <- COLNAMES
TIndel <- CONTROL_T[,c('DP_HQ','Indel')]
colnames(TIndel) <- COLNAMES
CONTROL_Indel_A <- rbind(AIndel, TIndel)
# G>Indel | C>Indel
GIndel <- CONTROL_G[,c('DP_HQ','Indel')]
colnames(GIndel) <- COLNAMES
CIndel <- CONTROL_C[,c('DP_HQ','Indel')]
colnames(CIndel) <- COLNAMES
CONTROL_Indel_G <- rbind(GIndel, CIndel)
## Estimating parameters for each nucleotide change when we only have 1 duplicate per barcode group
FIT_DP.TG <- MODEL_BETABIN_DP_DP(CONTROL_TG)
FIT_DP.TA <- MODEL_BETABIN_DP_DP(CONTROL_TA)
FIT_DP.TC <- MODEL_BETABIN_DP_DP(CONTROL_TC)
FIT_DP.GT <- MODEL_BETABIN_DP_DP(CONTROL_GT)
FIT_DP.GA <- MODEL_BETABIN_DP_DP(CONTROL_GA)
FIT_DP.GC <- MODEL_BETABIN_DP_DP(CONTROL_GC)
FIT_DP.Indel_A <- MODEL_BETABIN_DP_DP(CONTROL_Indel_A)
FIT_DP.Indel_G <- MODEL_BETABIN_DP_DP(CONTROL_Indel_G)
TABLE <- data.frame(FIT_DP.TG, FIT_DP.TA, FIT_DP.TC, FIT_DP.GT, FIT_DP.GA, FIT_DP.GC, FIT_DP.Indel_A, FIT_DP.Indel_G)
colnames(TABLE) <- c('TG', 'TA', 'TC', 'GT', 'GA', 'GC', 'Indel_A', 'Indel_G')
TABLE$Param <- c('Alpha', 'Beta')
TABLE <- TABLE[,c('Param','TG', 'TA', 'TC', 'GT', 'GA', 'GC', 'Indel_A', 'Indel_G')]
rownames(TABLE) <- TABLE$Param
return(TABLE)
}
###################
# Arguments
###################
parser <- ArgumentParser()
# setting parameters
parser$add_argument("-t1", "--tumor_file1", type="character", help="Tumor - Read count input file for duplicates = 1", metavar="file", nargs=1, required=TRUE)
parser$add_argument("-t2", "--tumor_file2", type="character", help="Tumor - Read count input file for duplicates = 2", metavar="file", nargs=1, required=TRUE)
parser$add_argument("-t3", "--tumor_file3", type="character", help="Tumor - Read count input file for duplicates = 3", metavar="file", nargs=1, required=TRUE)
parser$add_argument("-t4", "--tumor_file4", type="character", help="Tumor - Read count input file for duplicates = 4", metavar="file", nargs=1, required=TRUE)
parser$add_argument("-o", "--out_file", type="character", help="output_file", metavar="file", nargs=1, required=TRUE)
# reading parameters
args <- parser$parse_args()
TD1 <- args$tumor_file1
TD2 <- args$tumor_file2
TD3 <- args$tumor_file3
TD4 <- args$tumor_file4
OUTF <- args$out_file
###################
# Running
###################
DP1 <- as.data.frame(fread(TD1))
DP2 <- as.data.frame(fread(TD2))
DP3 <- as.data.frame(fread(TD3))
DP4 <- as.data.frame(fread(TD4))
ALL <- rbind(DP1, DP2, DP3, DP4)
# DP1
DP1 <- SAMPLE(DP1)
PARAMS1 <- PARAMS(DP1)
PARAMS1$BARCODE <- 'DP1'
# DP2
DP2 <- SAMPLE(DP2)
PARAMS2 <- PARAMS(DP2)
PARAMS2$BARCODE <- 'DP2'
# DP3
DP3 <- SAMPLE(DP3)
PARAMS3 <- PARAMS(DP3)
PARAMS3$BARCODE <- 'DP3'
# DP4
DP4 <- SAMPLE(DP4)
PARAMS4 <- PARAMS(DP4)
PARAMS4$BARCODE <- 'DP4'
# ALL
ALL <- SAMPLE(ALL)
PARAMETERS_ALL <- PARAMS(ALL)
PARAMETERS_ALL$BARCODE <- 'ALL'
# Parameters table
PARAMETERS <- rbind(PARAMS1, PARAMS2, PARAMS3, PARAMS4, PARAMETERS_ALL)
# Printing final table
write.table(x = PARAMETERS, file = OUTF, quote = F, sep = '\t', col.names = T, row.names = F)