|
| 1 | +import pytest |
| 2 | + |
| 3 | + |
| 4 | +try: |
| 5 | + import feinsum # noqa: F401 |
| 6 | +except ModuleNotFoundError: |
| 7 | + pytest.skip(reason="BatchedEinsumActx imposes feinsum as a hard dep.", |
| 8 | + allow_module_level=True) |
| 9 | + |
| 10 | +try: |
| 11 | + from loopy import get_kennedy_unweighted_fusion_candidates # noqa: F401 |
| 12 | + from loopy import rename_inames_in_batch # noqa: F401 |
| 13 | +except ImportError: |
| 14 | + pytest.skip(reason="BatchedEinsumActx imposes loop-fusion support in " |
| 15 | + "loopy as a hard dep.", allow_module_level=True) |
| 16 | + |
| 17 | +from dataclasses import dataclass |
| 18 | + |
| 19 | +import numpy as np |
| 20 | + |
| 21 | +from pytools.tag import UniqueTag |
| 22 | + |
| 23 | +from arraycontext import ( |
| 24 | + BatchedEinsumPytatoPyOpenCLArrayContext as BaseBatchedEinsumArrayContext, |
| 25 | + PyOpenCLArrayContext, PytatoPyOpenCLArrayContext, tag_axes) |
| 26 | +from arraycontext.pytest import ( |
| 27 | + _PytestEagerJaxArrayContextFactory, _PytestPyOpenCLArrayContextFactoryWithClass, |
| 28 | + _PytestPytatoJaxArrayContextFactory, _PytestPytatoPyOpenCLArrayContextFactory, |
| 29 | + _PytestSplitPytatoPyOpenCLArrayContextFactory, |
| 30 | + pytest_generate_tests_for_array_contexts) |
| 31 | + |
| 32 | + |
| 33 | +# {{{ axes tag types for image processing |
| 34 | + |
| 35 | +class AxisTagsForTesting(UniqueTag): |
| 36 | + pass |
| 37 | + |
| 38 | + |
| 39 | +class ImageDimensionTag(AxisTagsForTesting): |
| 40 | + """ |
| 41 | + An abstract tag type that is tagged to an array's axis indexing along an image's |
| 42 | + axis. |
| 43 | + """ |
| 44 | + |
| 45 | + |
| 46 | +class XDimension(ImageDimensionTag): |
| 47 | + """ |
| 48 | + A tag that is attached to a :class:`pytato.array.Axis` that indexes along the |
| 49 | + x-dimension of an image. |
| 50 | + """ |
| 51 | + |
| 52 | + |
| 53 | +class YDimension(ImageDimensionTag): |
| 54 | + """ |
| 55 | + A tag that is attached to a :class:`pytato.array.Axis` that indexes along the |
| 56 | + y-dimension of an image. |
| 57 | + """ |
| 58 | + |
| 59 | + |
| 60 | +class ChannelDimension(ImageDimensionTag): |
| 61 | + """ |
| 62 | + A tag that is attached to a :class:`pytato.array.Axis` that indexes along the |
| 63 | + channels of an image. |
| 64 | + """ |
| 65 | + |
| 66 | +# }}} |
| 67 | + |
| 68 | + |
| 69 | +# {{{ generic axes tags |
| 70 | + |
| 71 | +@dataclass(frozen=True) |
| 72 | +class NamedAxis(AxisTagsForTesting): |
| 73 | + name: str |
| 74 | + |
| 75 | +# }}} |
| 76 | + |
| 77 | + |
| 78 | +# {{{ array context fixture |
| 79 | + |
| 80 | +class BatchedEinsumPytatoPyOpenCLArrayContext( |
| 81 | + BaseBatchedEinsumArrayContext): |
| 82 | + def __init__(self, queue, allocator=None): |
| 83 | + super().__init__(queue, allocator, |
| 84 | + fallback_to_no_fusion=False, |
| 85 | + loop_fusion_axis_tag_t=AxisTagsForTesting) |
| 86 | + |
| 87 | + |
| 88 | +class _PyOpenCLArrayContextForTests(PyOpenCLArrayContext): |
| 89 | + """Like :class:`PyOpenCLArrayContext`, but applies no program transformations |
| 90 | + whatsoever. Only to be used for testing internal to :mod:`arraycontext`. |
| 91 | + """ |
| 92 | + |
| 93 | + def transform_loopy_program(self, t_unit): |
| 94 | + return t_unit |
| 95 | + |
| 96 | + |
| 97 | +class _PytatoPyOpenCLArrayContextForTests(PytatoPyOpenCLArrayContext): |
| 98 | + """Like :class:`PytatoPyOpenCLArrayContext`, but applies no program |
| 99 | + transformations whatsoever. Only to be used for testing internal to |
| 100 | + :mod:`arraycontext`. |
| 101 | + """ |
| 102 | + |
| 103 | + def transform_loopy_program(self, t_unit): |
| 104 | + return t_unit |
| 105 | + |
| 106 | + |
| 107 | +class _PytatoPyOpenCLArrayContextForTestsFactory( |
| 108 | + _PytestPytatoPyOpenCLArrayContextFactory): |
| 109 | + actx_class = _PytatoPyOpenCLArrayContextForTests |
| 110 | + |
| 111 | + |
| 112 | +class _PyOpenCLArrayContextForTestsFactoryWithHostScalars( |
| 113 | + _PytestPyOpenCLArrayContextFactoryWithClass): |
| 114 | + force_device_scalars = True |
| 115 | + actx_class = _PyOpenCLArrayContextForTests |
| 116 | + |
| 117 | + |
| 118 | +class _PytestBatchedEinsumPytatoPyOpenCLArrayContextFactory( |
| 119 | + _PytestPytatoPyOpenCLArrayContextFactory): |
| 120 | + @property |
| 121 | + def actx_class(self): |
| 122 | + return BatchedEinsumPytatoPyOpenCLArrayContext |
| 123 | + |
| 124 | + |
| 125 | +pytest_generate_tests = pytest_generate_tests_for_array_contexts([ |
| 126 | + _PyOpenCLArrayContextForTestsFactoryWithHostScalars, |
| 127 | + _PytatoPyOpenCLArrayContextForTestsFactory, |
| 128 | + _PytestEagerJaxArrayContextFactory, |
| 129 | + _PytestPytatoJaxArrayContextFactory, |
| 130 | + _PytestSplitPytatoPyOpenCLArrayContextFactory, |
| 131 | + _PytestBatchedEinsumPytatoPyOpenCLArrayContextFactory, |
| 132 | + ]) |
| 133 | + |
| 134 | +# }}} |
| 135 | + |
| 136 | + |
| 137 | +def test_simple_add(actx_factory): |
| 138 | + # Lesson 01 of Halide Tutorial |
| 139 | + actx = actx_factory() |
| 140 | + |
| 141 | + rng = np.random.default_rng(0) |
| 142 | + a_np = rng.random((800, 600)) |
| 143 | + b_np = rng.random((800, 600)) |
| 144 | + a = actx.from_numpy(a_np) |
| 145 | + b = actx.from_numpy(b_np) |
| 146 | + |
| 147 | + a = tag_axes(actx, {0: XDimension(), 1: YDimension()}, a) |
| 148 | + b = tag_axes(actx, {0: XDimension(), 1: YDimension()}, b) |
| 149 | + |
| 150 | + out = actx.to_numpy(a + b) |
| 151 | + ref_out = a_np + b_np |
| 152 | + |
| 153 | + np.testing.assert_allclose(out, ref_out) |
| 154 | + |
| 155 | + |
| 156 | +def test_brighten_image(actx_factory): |
| 157 | + # Lesson 02 of Halide Tutorial |
| 158 | + actx = actx_factory() |
| 159 | + |
| 160 | + rng = np.random.default_rng(0) |
| 161 | + |
| 162 | + img_np = 255*rng.random((800, 600, 3), dtype=np.float32) |
| 163 | + |
| 164 | + img = actx.from_numpy(img_np) |
| 165 | + img = tag_axes(actx, |
| 166 | + {0: XDimension(), 1: YDimension(), 2: ChannelDimension()}, |
| 167 | + img) |
| 168 | + |
| 169 | + brightened_img = 1.5*img |
| 170 | + clamped_brightened_img = actx.np.minimum(brightened_img, np.float32(255)) |
| 171 | + |
| 172 | + out = actx.to_numpy(clamped_brightened_img) |
| 173 | + ref_out = np.minimum(1.5*img_np, np.float32(255)) |
| 174 | + |
| 175 | + np.testing.assert_allclose(out, ref_out) |
| 176 | + |
| 177 | + |
| 178 | +def test_simple_einsum(actx_factory): |
| 179 | + actx = actx_factory() |
| 180 | + |
| 181 | + rng = np.random.default_rng() |
| 182 | + |
| 183 | + a_np = rng.random((10, 4)) |
| 184 | + a = actx.from_numpy(a_np) |
| 185 | + a = tag_axes(actx, |
| 186 | + {0: XDimension(), 1: YDimension()}, a) |
| 187 | + |
| 188 | + out1 = actx.einsum("ij,ij->i", a, a+1) |
| 189 | + out2 = actx.einsum("ij,ij->i", 2*a, 3*a+7) |
| 190 | + |
| 191 | + ref_out = (np.einsum("ij,ij->i", a_np, a_np + 1) |
| 192 | + + np.einsum("ij,ij->i", 2*a_np, 3*a_np+7)) |
| 193 | + out = actx.to_numpy(out1 + out2) |
| 194 | + |
| 195 | + np.testing.assert_allclose(ref_out, out) |
| 196 | + |
| 197 | + |
| 198 | +def test_nested_einsum(actx_factory): |
| 199 | + actx = actx_factory() |
| 200 | + |
| 201 | + rng = np.random.default_rng() |
| 202 | + |
| 203 | + a_np = rng.random((10, 4)) |
| 204 | + |
| 205 | + # {{{ compute out |
| 206 | + |
| 207 | + a = actx.from_numpy(a_np) |
| 208 | + a = tag_axes(actx, |
| 209 | + {0: XDimension(), 1: YDimension()}, a) |
| 210 | + b = a + 1 |
| 211 | + |
| 212 | + out1 = actx.einsum("ij,ij->i", a, b) |
| 213 | + out2 = actx.einsum("ij,ij->i", 2*a, 3*a+7) |
| 214 | + out3 = actx.einsum("ij,i->i", 3*b, 2*out1) |
| 215 | + |
| 216 | + out = actx.to_numpy(out1 + out2 + out3) |
| 217 | + |
| 218 | + # }}} |
| 219 | + |
| 220 | + # {{{ compute ref_out |
| 221 | + |
| 222 | + b_np = a_np + 1 |
| 223 | + out1_np = np.einsum("ij,ij->i", a_np, a_np+1) |
| 224 | + out2_np = np.einsum("ij,ij->i", 2*a_np, 3*a_np+7) |
| 225 | + out3_np = np.einsum("ij,i->i", 3*b_np, 2*out1_np) |
| 226 | + ref_out = out1_np + out2_np + out3_np |
| 227 | + |
| 228 | + # }}} |
| 229 | + |
| 230 | + np.testing.assert_allclose(ref_out, out) |
| 231 | + |
| 232 | + |
| 233 | +def test_dg_3d_divergence(actx_factory): |
| 234 | + actx = actx_factory() |
| 235 | + rng = np.random.default_rng(42) |
| 236 | + n_el = 1000 |
| 237 | + n_dof = 35 |
| 238 | + |
| 239 | + ax_np, ay_np, az_np = rng.random((3, n_el, n_dof)) |
| 240 | + jac_np = rng.random((3, 3, n_el)) |
| 241 | + mat_np = rng.random((3, n_dof, n_dof)) |
| 242 | + |
| 243 | + ax, ay, az = (actx.from_numpy(ax_np), |
| 244 | + actx.from_numpy(ay_np), |
| 245 | + actx.from_numpy(az_np)) |
| 246 | + jac = actx.from_numpy(jac_np) |
| 247 | + jac = tag_axes(actx, {0: NamedAxis("x"), |
| 248 | + 1: NamedAxis("r"), |
| 249 | + 2: NamedAxis("e")}, jac) |
| 250 | + mat = actx.from_numpy(mat_np) |
| 251 | + mat = tag_axes(actx, {0: NamedAxis("r"), |
| 252 | + 1: NamedAxis("i"), |
| 253 | + 2: NamedAxis("j")}, mat) |
| 254 | + |
| 255 | + out = 2*actx.einsum( |
| 256 | + "xre,rij,xej->ei", |
| 257 | + jac, mat, actx.np.stack([3*actx.np.sin(ax) + 4*actx.np.cos(ax), |
| 258 | + 12*actx.np.exp(ay) + 5*actx.np.cos(ay), |
| 259 | + 8*az])) |
| 260 | + ref_out = 2*np.einsum( |
| 261 | + "xre,rij,xej->ei", |
| 262 | + jac_np, mat_np, np.stack([3*np.sin(ax_np) + 4*np.cos(ax_np), |
| 263 | + 12*np.exp(ay_np) + 5*np.cos(ay_np), |
| 264 | + 8*az_np])) |
| 265 | + |
| 266 | + np.testing.assert_allclose(ref_out, actx.to_numpy(out)) |
| 267 | + |
| 268 | +# vim: fdm=marker |
0 commit comments