|
| 1 | +""" |
| 2 | +.. autoclass:: BatchedEinsumPytatoPyOpenCLArrayContext """ |
| 3 | + |
| 4 | +__copyright__ = """ |
| 5 | +Copyright (C) 2023 Kaushik Kulkarni |
| 6 | +Copyright (C) 2022 Andreas Kloeckner |
| 7 | +Copyright (C) 2022 Matthias Diener |
| 8 | +Copyright (C) 2022 Matt Smith |
| 9 | +""" |
| 10 | + |
| 11 | +__license__ = """ |
| 12 | +Permission is hereby granted, free of charge, to any person obtaining a copy |
| 13 | +of this software and associated documentation files (the "Software"), to deal |
| 14 | +in the Software without restriction, including without limitation the rights |
| 15 | +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 16 | +copies of the Software, and to permit persons to whom the Software is |
| 17 | +furnished to do so, subject to the following conditions: |
| 18 | +
|
| 19 | +The above copyright notice and this permission notice shall be included in |
| 20 | +all copies or substantial portions of the Software. |
| 21 | +
|
| 22 | +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 23 | +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 24 | +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 25 | +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 26 | +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 27 | +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| 28 | +THE SOFTWARE. |
| 29 | +""" |
| 30 | + |
| 31 | + |
| 32 | +import logging |
| 33 | +import sys |
| 34 | +from typing import TYPE_CHECKING, Any, Callable, Optional, Type |
| 35 | +from warnings import warn |
| 36 | + |
| 37 | +import numpy as np |
| 38 | + |
| 39 | +import loopy as lp |
| 40 | +from pytools import ProcessLogger |
| 41 | +from pytools.tag import Tag |
| 42 | + |
| 43 | +from arraycontext.impl.pytato import PytatoPyOpenCLArrayContext |
| 44 | + |
| 45 | + |
| 46 | +logger = logging.getLogger(__name__) |
| 47 | + |
| 48 | + |
| 49 | +if TYPE_CHECKING or getattr(sys, "_BUILDING_SPHINX_DOCS", False): |
| 50 | + import pyopencl as cl |
| 51 | + import pytato |
| 52 | + |
| 53 | + |
| 54 | +class BatchedEinsumPytatoPyOpenCLArrayContext(PytatoPyOpenCLArrayContext): |
| 55 | + r""" |
| 56 | + .. attribute:: loop_fusion_axis_tag_t |
| 57 | +
|
| 58 | + A subtype of :class:`pytato.tag.Tag` that are attached to the |
| 59 | + :class:`~pytato.array.Array`\ 's axes in an expression graph. Loops that |
| 60 | + iterate over axes tagged with instances of same such tag types will form the |
| 61 | + candidate loops for Kennedy's unweighted Loop Fusion algorithm. |
| 62 | +
|
| 63 | + .. attribute:: fallback_to_no_fusion |
| 64 | +
|
| 65 | + If *True*, during the compilation of an array expression graph for which |
| 66 | + loop fusion fails (see note) transformation routines from |
| 67 | + :class:`arraycontext.SplitPytatoPyOpenCLArrayContext` are invoked. |
| 68 | +
|
| 69 | + .. attribute:: feinsum_db |
| 70 | +
|
| 71 | + An instance of :class:`str` corresponding to the database of tuned batched |
| 72 | + einsums. If *None*, then a static transformation strategy is applied to the |
| 73 | + batched einsums kernels. |
| 74 | +
|
| 75 | + .. attribute:: log_loopy_statistics |
| 76 | +
|
| 77 | + If *True*, statistics of compiled :class:`loopy.TranslationUnit` will be |
| 78 | + logged. If enable, we log the FLOPS and global memory access footprint for |
| 79 | + each of the programs. If *False*, nothing is done. |
| 80 | +
|
| 81 | + .. note:: |
| 82 | +
|
| 83 | + The conditions under which we fallback (or raise) are: |
| 84 | +
|
| 85 | + #. There exists an array that is to be materialized but at least one of its |
| 86 | + axes is not tagged with tags of :attr:`loop_fusion_axis_tag_t`. |
| 87 | + """ |
| 88 | + def __init__( |
| 89 | + self, |
| 90 | + queue: "cl.CommandQueue", allocator=None, |
| 91 | + *, |
| 92 | + loop_fusion_axis_tag_t: Type[Tag], |
| 93 | + fallback_to_no_fusion: bool = True, |
| 94 | + assume_all_indirection_maps_as_non_negative: bool = False, |
| 95 | + compile_trace_callback: Optional[Callable[[Any, str, Any], None]] = None, |
| 96 | + feinsum_db: Optional[str] = None, |
| 97 | + log_loopy_statistics: bool = False, |
| 98 | + fused_loop_name_prefix_getter: Optional[Callable[[Tag], str]] = None, |
| 99 | + ) -> None: |
| 100 | + super().__init__(queue, |
| 101 | + allocator, |
| 102 | + compile_trace_callback=compile_trace_callback) |
| 103 | + |
| 104 | + self.loop_fusion_axis_tag_t = loop_fusion_axis_tag_t |
| 105 | + self.fallback_to_no_fusion = fallback_to_no_fusion |
| 106 | + self.feinsum_db = feinsum_db |
| 107 | + self.assume_all_indirection_maps_as_non_negative = ( |
| 108 | + assume_all_indirection_maps_as_non_negative) |
| 109 | + self.log_loopy_statistics = log_loopy_statistics |
| 110 | + if fused_loop_name_prefix_getter: |
| 111 | + self.fused_loop_name_prefix_getter = fused_loop_name_prefix_getter |
| 112 | + else: |
| 113 | + self.fused_loop_name_prefix_getter = lambda tag_t: "ifused" |
| 114 | + |
| 115 | + def transform_dag(self, |
| 116 | + dag: "pytato.DictOfNamedArrays") -> "pytato.DictOfNamedArrays": |
| 117 | + import pytato as pt |
| 118 | + |
| 119 | + from .utils import ( |
| 120 | + _make_passthrough_arg, get_indirection_maps, |
| 121 | + get_inputs_and_outputs_of_reduction_nodes) |
| 122 | + from arraycontext.impl.pytato.split_actx.utils import ( |
| 123 | + get_inputs_and_outputs_of_einsum) |
| 124 | + |
| 125 | + # Step 1. Collapse equivalent nodes in DAG. |
| 126 | + # ----------------------------------------- |
| 127 | + # type-ignore-reason: mypy is right pytato provides imprecise types. |
| 128 | + dag = pt.transform.deduplicate_data_wrappers(dag) # type: ignore[assignment] |
| 129 | + |
| 130 | + # Step 2. Materialize einsum/reduction outputs. |
| 131 | + # --------------------------------------------- |
| 132 | + _, einsum_outputs = get_inputs_and_outputs_of_einsum(dag) |
| 133 | + _, reduction_outputs = get_inputs_and_outputs_of_reduction_nodes(dag) |
| 134 | + |
| 135 | + def materialize_all_einsums_or_reduces(expr): |
| 136 | + if (expr in einsum_outputs |
| 137 | + or expr in reduction_outputs): |
| 138 | + return expr.tagged(pt.tags.ImplStored()) |
| 139 | + else: |
| 140 | + return expr |
| 141 | + |
| 142 | + # type-ignore-reason: mypy is right pytato provides imprecise types. |
| 143 | + dag = pt.transform.map_and_copy(dag, # type: ignore[assignment] |
| 144 | + materialize_all_einsums_or_reduces) |
| 145 | + |
| 146 | + # Step 3. Materialize with MPMS |
| 147 | + # ----------------------------- |
| 148 | + dag = pt.transform.materialize_with_mpms(dag) |
| 149 | + |
| 150 | + # Step 4. Mark all indirection maps as non-negative |
| 151 | + # ------------------------------------------------- |
| 152 | + if self.assume_all_indirection_maps_as_non_negative: |
| 153 | + indirection_maps = get_indirection_maps(dag) |
| 154 | + |
| 155 | + def tag_indices_as_non_negative(ary): |
| 156 | + if ary in indirection_maps: |
| 157 | + return ary.tagged(pt.tags.AssumeNonNegative()) |
| 158 | + else: |
| 159 | + return ary |
| 160 | + |
| 161 | + # type-ignore-reason: mypy is right pytato provides imprecise types. |
| 162 | + dag = pt.transform.map_and_copy(dag, # type: ignore[assignment] |
| 163 | + tag_indices_as_non_negative) |
| 164 | + |
| 165 | + # Step 5. Get rid of broadcasts in einsum expressions (helps feinsum) |
| 166 | + # ------------------------------------------------------------------- |
| 167 | + dag = pt.rewrite_einsums_with_no_broadcasts(dag) |
| 168 | + |
| 169 | + # Step 6. Infer axis tags |
| 170 | + # ----------------------- |
| 171 | + # type-ignore-reason: mypy is right pytato provides imprecise types. |
| 172 | + dag = pt.unify_axes_tags(dag) # type: ignore[assignment] |
| 173 | + |
| 174 | + # Step 7. Make all pt.einsum/pt.reduction inputs as substitutions |
| 175 | + # --------------------------------------------------------------- |
| 176 | + def implement_einsum_reduction_inputs_as_substs(expr): |
| 177 | + from immutables import Map |
| 178 | + |
| 179 | + from pytato.target.loopy import ImplSubstitution |
| 180 | + if isinstance(expr, pt.Einsum): |
| 181 | + # make the arguments passthrough to make use of already stored |
| 182 | + # values. |
| 183 | + # pylint and 'attrs' have poor compatibility |
| 184 | + # pylint: disable=too-many-function-args,redundant-keyword-arg |
| 185 | + # pylint: disable=unexpected-keyword-arg |
| 186 | + return pt.Einsum( |
| 187 | + expr.access_descriptors, |
| 188 | + tuple(_make_passthrough_arg(arg, ImplSubstitution()) |
| 189 | + for arg in expr.args), |
| 190 | + expr.redn_axis_to_redn_descr, |
| 191 | + expr.index_to_access_descr, |
| 192 | + tags=expr.tags, |
| 193 | + axes=expr.axes, |
| 194 | + ) |
| 195 | + elif isinstance(expr, pt.IndexLambda) and expr.var_to_reduction_descr: |
| 196 | + # make the arguments passthrough to make use of already stored |
| 197 | + # values. |
| 198 | + # pylint: disable=too-many-function-args,redundant-keyword-arg |
| 199 | + # pylint: disable=unexpected-keyword-arg |
| 200 | + return pt.IndexLambda( |
| 201 | + expr.expr, |
| 202 | + expr.shape, |
| 203 | + expr.dtype, |
| 204 | + Map({name: _make_passthrough_arg(bnd, ImplSubstitution()) |
| 205 | + for name, bnd in expr.bindings.items()}), |
| 206 | + expr.var_to_reduction_descr, |
| 207 | + tags=expr.tags, |
| 208 | + axes=expr.axes, |
| 209 | + ) |
| 210 | + else: |
| 211 | + return expr |
| 212 | + |
| 213 | + # type-ignore-reason: mypy is right pytato provides imprecise types. |
| 214 | + dag = pt.transform.map_and_copy(dag, # type: ignore[assignment] |
| 215 | + implement_einsum_reduction_inputs_as_substs) |
| 216 | + |
| 217 | + return dag |
| 218 | + |
| 219 | + def transform_loopy_program(self, |
| 220 | + t_unit: lp.TranslationUnit) -> lp.TranslationUnit: |
| 221 | + knl_name = t_unit.default_entrypoint.name |
| 222 | + |
| 223 | + logger.info(f"[{self.__class__}.transform_loopy_program]:" |
| 224 | + f" Transforming kernel '{knl_name}' with" |
| 225 | + f" {len(t_unit.default_entrypoint.instructions)} statements.") |
| 226 | + |
| 227 | + # Step 0. Fallback if cannot t_unit cannot be transformed |
| 228 | + # ------------------------------------------------------- |
| 229 | + for iname in t_unit.default_entrypoint.all_inames(): |
| 230 | + if not t_unit.default_entrypoint.iname_tags_of_type( |
| 231 | + iname, self.loop_fusion_axis_tag_t): |
| 232 | + if self.fallback_to_no_fusion: |
| 233 | + warn(f"[{knl_name}]: Falling back to a slower transformation" |
| 234 | + " strategy as some loops are uninferred which mesh entity" |
| 235 | + " they belong to.", |
| 236 | + stacklevel=2) |
| 237 | + from arraycontext.impl.pytato.split_actx import ( |
| 238 | + SplitPytatoPyOpenCLArrayContext) |
| 239 | + |
| 240 | + # type-ignore-reason: mypy is right, we are passing incorrect |
| 241 | + # types, but knowing the implementation of |
| 242 | + # SplitPytatoPyOpenCLArrayContext this should be fine. |
| 243 | + return SplitPytatoPyOpenCLArrayContext.transform_loopy_program( |
| 244 | + self, t_unit) # type: ignore[arg-type] |
| 245 | + else: |
| 246 | + raise RuntimeError(f"Iname '{iname}' is not tagged with tags" |
| 247 | + f" of type '{self.loop_fusion_axis_tag_t}'" |
| 248 | + " => Not allowed since Kennedy's Loop fusion" |
| 249 | + " cannot be applied.") |
| 250 | + |
| 251 | + # Step 0.5. Make offsets as 0. (FIXME: move this to loopy knl invocation) |
| 252 | + # ----------------------------------------------------------------------- |
| 253 | + knl = t_unit.default_entrypoint |
| 254 | + knl = knl.copy(args=[arg.copy(offset=0) for arg in knl.args]) |
| 255 | + t_unit = t_unit.with_kernel(knl) |
| 256 | + del knl |
| 257 | + |
| 258 | + # Step 1. Fuse loops indexing over the same tag |
| 259 | + # --------------------------------------------- |
| 260 | + with ProcessLogger(logger, f"[{knl_name}] Loop Fusion"): |
| 261 | + from .utils import apply_kennedy_fusion_with_batched_einsum_extension |
| 262 | + t_unit = apply_kennedy_fusion_with_batched_einsum_extension( |
| 263 | + t_unit, self.loop_fusion_axis_tag_t, |
| 264 | + self.fused_loop_name_prefix_getter) |
| 265 | + |
| 266 | + # Step 2. Combine the domains of individual loop nests into individual |
| 267 | + # BasicSets |
| 268 | + # -------------------------------------------------------------------- |
| 269 | + from .utils import combine_domains_of_perfect_loop_nests |
| 270 | + t_unit = combine_domains_of_perfect_loop_nests(t_unit) |
| 271 | + |
| 272 | + # Step 3. Remove dead temporaries |
| 273 | + # ------------------------------- |
| 274 | + from .utils import remove_dead_temporaries |
| 275 | + t_unit = remove_dead_temporaries(t_unit) |
| 276 | + |
| 277 | + # Step 4. Contract arrays |
| 278 | + # ----------------------- |
| 279 | + with ProcessLogger(logger, f"[{knl_name}] Array Contraction"): |
| 280 | + from .utils import contract_arrays |
| 281 | + t_unit = contract_arrays(t_unit) |
| 282 | + |
| 283 | + # Step 5. Collect statistics |
| 284 | + # -------------------------- |
| 285 | + |
| 286 | + # {{{ compute stats |
| 287 | + |
| 288 | + if self.log_loopy_statistics: |
| 289 | + |
| 290 | + with ProcessLogger(logger, f"[{knl_name}] Count kernel metrics"): |
| 291 | + from loopy.kernel.array import ArrayBase |
| 292 | + from pytools import product |
| 293 | + knl = t_unit.default_entrypoint |
| 294 | + knl = knl.copy( |
| 295 | + silenced_warnings=(knl.silenced_warnings |
| 296 | + + ["insn_count_subgroups_upper_bound", |
| 297 | + "summing_if_branches_ops"])) |
| 298 | + |
| 299 | + t_unit = t_unit.with_kernel(knl) |
| 300 | + del knl |
| 301 | + |
| 302 | + op_map = lp.get_op_map(t_unit, subgroup_size=32) |
| 303 | + |
| 304 | + c64_ops = {op_type: (op_map.filter_by(dtype=[np.complex64], |
| 305 | + name=op_type, |
| 306 | + kernel_name=knl_name) |
| 307 | + .eval_and_sum({})) |
| 308 | + for op_type in ["add", "mul", "div"]} |
| 309 | + c128_ops = {op_type: (op_map.filter_by(dtype=[np.complex128], |
| 310 | + name=op_type, |
| 311 | + kernel_name=knl_name) |
| 312 | + .eval_and_sum({})) |
| 313 | + for op_type in ["add", "mul", "div"]} |
| 314 | + f32_ops = ((op_map.filter_by(dtype=[np.float32], |
| 315 | + kernel_name=knl_name) |
| 316 | + .eval_and_sum({})) |
| 317 | + + (2 * c64_ops["add"] |
| 318 | + + 6 * c64_ops["mul"] |
| 319 | + + (6 + 3 + 2) * c64_ops["div"])) |
| 320 | + f64_ops = ((op_map.filter_by(dtype=[np.float64], |
| 321 | + kernel_name="_pt_kernel") |
| 322 | + .eval_and_sum({})) |
| 323 | + + (2 * c128_ops["add"] |
| 324 | + + 6 * c128_ops["mul"] |
| 325 | + + (6 + 3 + 2) * c128_ops["div"])) |
| 326 | + |
| 327 | + # {{{ footprint gathering |
| 328 | + |
| 329 | + nfootprint_bytes = 0 |
| 330 | + |
| 331 | + for ary in knl.args: |
| 332 | + if (isinstance(ary, ArrayBase) |
| 333 | + and ary.address_space == lp.AddressSpace.GLOBAL): |
| 334 | + nfootprint_bytes += (product(ary.shape) |
| 335 | + * ary.dtype.itemsize) |
| 336 | + |
| 337 | + for ary in knl.temporary_variables.values(): |
| 338 | + if ary.address_space == lp.AddressSpace.GLOBAL: |
| 339 | + # global temps would be written once and read once |
| 340 | + nfootprint_bytes += (2 * product(ary.shape) |
| 341 | + * ary.dtype.itemsize) |
| 342 | + |
| 343 | + # }}} |
| 344 | + |
| 345 | + if f32_ops: |
| 346 | + logger.info(f"Single-prec. GFlOps: {f32_ops * 1e-9}") |
| 347 | + if f64_ops: |
| 348 | + logger.info(f"Double-prec. GFlOps: {f64_ops * 1e-9}") |
| 349 | + logger.info(f"Footprint GBs: {nfootprint_bytes * 1e-9}") |
| 350 | + |
| 351 | + # }}} |
| 352 | + |
| 353 | + # Step 6. Draw kernel boundaries between batched einsum kernels |
| 354 | + # ------------------------------------------------------------- |
| 355 | + from arraycontext.impl.pytato.split_actx.utils import ( |
| 356 | + add_gbarrier_between_disjoint_loop_nests) |
| 357 | + |
| 358 | + t_unit = add_gbarrier_between_disjoint_loop_nests(t_unit) |
| 359 | + |
| 360 | + # Step 7. Alias global temporaries with disjoint live intervals |
| 361 | + # ------------------------------------------------------------- |
| 362 | + from arraycontext.impl.pytato.split_actx.utils import ( |
| 363 | + alias_global_temporaries) |
| 364 | + t_unit = alias_global_temporaries(t_unit) |
| 365 | + |
| 366 | + # Step 8. Macro-kernel optimizations |
| 367 | + # ---------------------------------- |
| 368 | + if self.feinsum_db: |
| 369 | + from .utils import apply_feinsum_transformations |
| 370 | + t_unit = apply_feinsum_transformations( |
| 371 | + t_unit, self.feinsum_db, self.queue.device) |
| 372 | + else: |
| 373 | + from arraycontext.impl.pytato.split_actx.utils import ( |
| 374 | + parallelize_reduce_to_scalars, |
| 375 | + split_iteration_domain_across_work_items) |
| 376 | + t_unit = split_iteration_domain_across_work_items(t_unit, |
| 377 | + self.queue.device) |
| 378 | + t_unit = parallelize_reduce_to_scalars(t_unit, self.queue.device) |
| 379 | + |
| 380 | + return t_unit |
| 381 | + |
| 382 | +# vim: fdm=marker |
0 commit comments