You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
New content: Add definition for shape broadcasting
This change introduces a new section for Algorithms, following APIs,
to collect algorithms referenced throughout the specification.
A section for Broadcasting is introduced, which defines broadcasting
shapes and gives an explicit algorithm matching WebNN implementations
of NumPy's General Broadcasting Rules. Definitions for "broadcastable"
and "unidirectionally broadcastable" are introduced. The previous
definition of "broadcast-shapes" is removed in favor of these new
algorithms.
For webmachinelearning#324, webmachinelearning#378, webmachinelearning#462, and potentially webmachinelearning#523.
1. If |a|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dataType}} is not equal to |b|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dataType}}, then [=exception/throw=] a "{{DataError}}" {{DOMException}}.
2385
2385
1. Let |descriptor| be a new {{MLOperandDescriptor}}.
2386
2386
1. Set |descriptor|.{{MLOperandDescriptor/dataType}} to |a|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dataType}}.
2387
-
1. Set |descriptor|.{{MLOperandDescriptor/dimensions}} to the result of running the [=MLGraphBuilder/broadcast-shapes=] steps given |a|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}} and |b|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}}.
2388
-
1. If that [=exception/throws=] an error, re-[=exception/throw=]the error.
2387
+
1. Set |descriptor|.{{MLOperandDescriptor/dimensions}} to the result of [=bidirectionally broadcasting the shapes=] |a|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}} and |b|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}}.
2388
+
1. If that returns failure, then [=exception/throw=]a "{{DataError}}" {{DOMException}}.
2389
2389
1. If any of the following sub-steps fail, [=exception/throw=] an "{{OperationError}}" {{DOMException}}.
2390
2390
1. Let |output| be the result of [=creating an MLOperand=] given [=this=] and |descriptor|.
To <dfn for="MLGraphBuilder">broadcast-shapes</dfn> given [=/list=] |shape1| and [=/list=] |shape2|, run the following steps:
2405
-
</summary>
2406
-
<div class=algorithm-steps>
2407
-
1. [=Assert=]: The type of |shape1| and |shape2| is `sequence of unsigned long`.
2408
-
1. Let |output| be the result of invoking the [=implementation-defined=] shape broadcast on |shape1| and |shape2|.
2409
-
1. If that fails, then [=exception/throw=] a "{{DataError}}" {{DOMException}}.
2410
-
1. Return |output|.
2411
-
<div class = "note">
2412
-
The most common implementation is that two shapes are compatible, when each of their corresponding dimensions are equal, or one of them is 1. The output shape consists of the maximum of the corresponding dimensions.
2413
-
</div>
2414
-
</div>
2415
-
</details>
2416
-
2417
2402
<details open>
2418
2403
<summary>
2419
2404
The element-wise binary operation algorithms invoke the [=MLGraphBuilder/element-wise-binary-op | create element-wise binary operation=] steps as follows.
@@ -2520,8 +2505,8 @@ Although operations *greaterOrEqual* and *lesserOrEqual* can each be implemented
2520
2505
1. If |a|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dataType}} is not equal to |b|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dataType}}, then [=exception/throw=] a "{{DataError}}" {{DOMException}}.
2521
2506
1. Let |descriptor| be a new {{MLOperandDescriptor}}.
2522
2507
1. Set |descriptor|.{{MLOperandDescriptor/dataType}} to {{MLOperandDataType/"uint8"}}.
2523
-
1. Set |descriptor|.{{MLOperandDescriptor/dimensions}} to the result of running the [=MLGraphBuilder/broadcast-shapes=] steps given |a|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}} and |b|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}}.
2524
-
1. If that [=exception/throws=] an error, re-[=exception/throw=]the error.
2508
+
1. Set |descriptor|.{{MLOperandDescriptor/dimensions}} to the result of [=bidirectionally broadcasting the shapes=] |a|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}} and |b|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}}.
2509
+
1. If that returns failure, then [=exception/throw=]a "{{DataError}}" {{DOMException}}.
2525
2510
1. If any of the following sub-steps fail, [=exception/throw=] an "{{OperationError}}" {{DOMException}}.
2526
2511
1. Let |output| be the result of [=creating an MLOperand=] given [=this=] and |descriptor|.
Calculate the [general matrix multiplication of the Basic Linear Algebra Subprograms](https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms#Level_3). The calculation follows the expression `alpha * A * B + beta * C`, where `A` is a 2-D tensor with shape [M, K] or [K, M], `B` is a 2-D tensor with shape [K, N] or [N, K], and `C` is broadcastable to the shape [M, N]. `A` and `B` may optionally be transposed prior to the calculation.
2995
+
Calculate the [general matrix multiplication of the Basic Linear Algebra Subprograms](https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms#Level_3). The calculation follows the expression `alpha * A * B + beta * C`, where `A` is a 2-D tensor with shape [M, K] or [K, M], `B` is a 2-D tensor with shape [K, N] or [N, K], and `C` is [=unidirectionally broadcastable=] to the shape [M, N]. `A` and `B` may optionally be transposed prior to the calculation.
The third input tensor. It is either a scalar, or of the shape that is unidirectionally broadcastable to the shape [M, N] according to [[!numpy-broadcasting-rule]]. When it is not specified, the computation is done as if *c* is a scalar 0.0.
3015
+
The third input tensor. It is either a scalar, or of the shape that is [=unidirectionally broadcastable=] to the shape [M, N]. When it is not specified, the computation is done as if *c* is a scalar 0.0.
1. If |options|.{{MLGemmOptions/aTranspose}} is true, then let |shapeA| be the reverse array of |shapeA|.
3067
3053
1. If |options|.{{MLGemmOptions/bTranspose}} is true, then let |shapeB| be the reverse array of |shapeB|.
3068
3054
1. If |shapeA|[1] is not equal to |shapeB|[0], then [=exception/throw=] a "{{DataError}}" {{DOMException}}.
3069
-
1. If |options|.{{MLGemmOptions/c}}[=map/exists=] and is not unidirectionally broadcastable to the shape [|shapeA|[0], |shapeB|[1]] according to the [[!numpy-broadcasting-rule]], then [=exception/throw=] a "{{DataError}}" {{DOMException}}.
3055
+
1. If |options|.{{MLGemmOptions/c}}[=map/exists=] and is not [=unidirectionally broadcastable=] to the shape [|shapeA|[0], |shapeB|[1]], then [=exception/throw=] a "{{DataError}}" {{DOMException}}.
3070
3056
<div class="note">
3071
3057
Type compatibility between |a|, |b| and |options|.{{MLGemmOptions/c}} can be also checked.
- *slope*: an {{MLOperand}}. The slope tensor. Its shape is either the same as, or unidirectionally broadcastable to the shape of input tensor *input* according to [[!numpy-broadcasting-rule]].
4855
+
- *slope*: an {{MLOperand}}. The slope tensor. Its shape is either the same as, or [=unidirectionally broadcastable=] to the shape of input tensor *input*.
4870
4856
4871
4857
**Returns:**
4872
4858
- an {{MLOperand}}. The output tensor of the same shape as *input*.
1. Let |descriptor| be a new {{MLOperandDescriptor}}.
4882
4868
1. Set |descriptor|.{{MLOperandDescriptor/dataType}} to |input|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dataType}}.
4883
-
1. Set |descriptor|.{{MLOperandDescriptor/dimensions}} to the result of running the [=MLGraphBuilder/broadcast-shapes=] steps given |input|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}} and |slope|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}}.
4884
-
1. If that [=exception/throws=] an error, re-[=exception/throw=]the error.
4869
+
1. Set |descriptor|.{{MLOperandDescriptor/dimensions}} to the result of [=unidirectionally broadcasting the shapes=] |input|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}} and |slope|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}}.
4870
+
1. If that returns failure, then [=exception/throw=]a "{{DataError}}" {{DOMException}}.
4885
4871
1. If any of the following sub-steps fail, [=exception/throw=] an "{{OperationError}}" {{DOMException}}.
4886
4872
1. Let |output| be the result of [=creating an MLOperand=] given [=this=] and |descriptor|.
1. If |input|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dataType}} is not equal to |other|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dataType}}, then [=exception/throw=] a "{{DataError}}" {{DOMException}}.
6005
5991
1. Let |descriptor| be a new {{MLOperandDescriptor}}.
6006
5992
1. Set |descriptor|.{{MLOperandDescriptor/dataType}} to |input|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dataType}}.
6007
-
1. Set |descriptor|.{{MLOperandDescriptor/dimensions}} to the result of running the [=MLGraphBuilder/broadcast-shapes=] steps given |input|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}} and |other|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}}.
6008
-
1. If that [=exception/throws=] an error, re-[=exception/throw=]the error.
6009
-
1. If |condition| is not unidirectionally broadcastable to |descriptor|.{{MLOperandDescriptor/dimensions}} according to the [[!numpy-broadcasting-rule]], then [=exception/throw=] a "{{DataError}}" {{DOMException}}.
5993
+
1. Set |descriptor|.{{MLOperandDescriptor/dimensions}} to the result of [=bidirectionally broadcasting the shapes=] |input|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}} and |other|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}}.
5994
+
1. If that returns failure, then [=exception/throw=]a "{{DataError}}" {{DOMException}}.
5995
+
1. If |condition| is not [=unidirectionally broadcastable=] to |descriptor|.{{MLOperandDescriptor/dimensions}}, then [=exception/throw=] a "{{DataError}}" {{DOMException}}.
6010
5996
1. If any of the following sub-steps fail, [=exception/throw=] an "{{OperationError}}" {{DOMException}}.
6011
5997
1. Let |output| be the result of [=creating an MLOperand=] given [=this=] and |descriptor|.
Broadcasting refers to how operations treat tensors with different shapes, and follow the precedent set by [[!numpy-broadcasting-rule]].
6214
+
6215
+
<div algorithm>
6216
+
To <dfn data-lt="unidirectionally broadcasting the shapes">unidirectionally broadcast the shapes</dfn> |A| and |B|, perform the following steps. |A| and |B| are [=/lists=] of positive integers, representing the dimensions of tensors, and the steps return a new [=/list=] of positive integers, or failure.
6217
+
6218
+
1. Let |sizeA| be the [=list/size=] of |A|.
6219
+
1. Let |sizeB| be the [=list/size=] of |B|.
6220
+
1. Let |output| be a new [=/list=].
6221
+
1. [=list/For each=] |index| in [=the range=] 0 to |sizeA|, exclusive:
6222
+
1. Let |dimA| be |A|[|sizeA| - |index| - 1] if |index| < |sizeA|, or 1 otherwise.
6223
+
1. Let |dimB| be |B|[|sizeB| - |index| - 1] if |index| < |sizeB|, or 1 otherwise.
6224
+
1. If |dimA| is not equal to |dimB| and |dimA| is not equal to 1, then return failure.
6225
+
1. [=list/Prepend=] |dimA| to |output|.
6226
+
1. Return |output|.
6227
+
6228
+
</div>
6229
+
6230
+
<div algorithm>
6231
+
|A| is <dfn>unidirectionally broadcastable</dfn> to |B| if [=unidirectionally broadcasting the shapes=] |A| and |B| does not result in failure.
6232
+
</div>
6233
+
6234
+
<div algorithm>
6235
+
To <dfn data-lt="bidirectionally broadcasting the shapes">bidirectionally broadcast the shapes</dfn> |A| and |B|, perform the following steps. |A| and |B| are [=/lists=] of positive integers, representing the dimensions of tensors, and the steps return a new [=/list=] of positive integers, or failure.
6236
+
6237
+
1. Let |sizeA| be the [=list/size=] of |A|.
6238
+
1. Let |sizeB| be the [=list/size=] of |B|.
6239
+
1. Let |outputSize| be the maximum of |sizeA| and |sizeB|.
6240
+
1. Let |output| be a new [=/list=].
6241
+
1. [=list/For each=] |index| in [=the range=] 0 to |outputSize|, exclusive:
6242
+
1. Let |dimA| be |A|[|sizeA| - |index| - 1] if |index| < |sizeA|, or 1 otherwise.
6243
+
1. Let |dimB| be |B|[|sizeB| - |index| - 1] if |index| < |sizeB|, or 1 otherwise.
6244
+
1. If |dimA| is not equal to |dimB|, and |dimA| is not equal to 1, and |dimB| is not equal to 1, then return failure.
6245
+
1. [=list/Prepend=] the maximum of |dimA| and |dimB| to |output|.
0 commit comments