-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMNIST Classification Model..py
72 lines (62 loc) · 1.99 KB
/
MNIST Classification Model..py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import torch as tch
import torchvision.datasets as dt
import torchvision.transforms as trans
import torch.nn as nn
import matplotlib.pyplot as plt
from time import time
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter()
train = dt.MNIST(root="./datasets", train=True, transform=trans.ToTensor(), download=True)
test = dt.MNIST(root="./datasets", train=False, transform=trans.ToTensor(), download=True)
print("No. of Training examples: ",len(train))
print("No. of Test examples: ",len(test))
train_batch = tch.utils.data.DataLoader(train, batch_size=30, shuffle=True)
input = 784
hidden = 490
output = 10
model = nn.Sequential(nn.Linear(input, hidden),
nn.LeakyReLU(),
nn.Linear(hidden, output),
nn.LogSoftmax(dim=1))
lossfn = nn.NLLLoss()
images, labels = next(iter(train_batch))
images = images.view(images.shape[0], -1)
logps = model(images)
loss = lossfn(logps, labels)
loss.backward()
optimize = tch.optim.SGD(model.parameters(), lr=0.003, momentum=0.9)
time_start = time()
epochs = 18
for num in range(epochs):
run=0
for images, labels in train_batch:
images = images.view(images.shape[0], -1)
optimize.zero_grad()
output = model(images)
loss = lossfn(output, labels)
writer.add_scalar("Loss", loss, num)
loss.backward()
optimize.step()
run += loss.item()
else:
print("Epoch Number : {} = Loss : {}".format(num, run/len(train_batch)))
Elapsed=(time()-time_start)/60
print("\nTraining Time (in minutes) : ",Elapsed)
writer.flush()
writer.close()
correct=0
all = 0
for images,labels in test:
img = images.view(1, 784)
with tch.no_grad():
logps = model(img)
ps = tch.exp(logps)
probab = list(ps.numpy()[0])
prediction = probab.index(max(probab))
truth = labels
if(truth == prediction):
correct += 1
all += 1
print("Number Of Images Tested : ", all)
print("Model Accuracy : ", (correct/all))
tch.save(model, './mnist_model.pt')