Skip to content

Commit a014ffa

Browse files
Update README.md
1 parent e33f472 commit a014ffa

File tree

1 file changed

+18
-0
lines changed

1 file changed

+18
-0
lines changed

README.md

+18
Original file line numberDiff line numberDiff line change
@@ -64,3 +64,21 @@ This is implemented as :
6464

6565
https://github.com/infinitecoder1729/mnist-dataset-classification/blob/0fa674e4325acf4e82ea8513c948062677d04baf/MNIST%20Classification%20Model..py#L16-L18
6666

67+
### Creating the Neural network Sequence :
68+
69+
#### Definining the Model Sequence :
70+
71+
Although a wide range of activation algorithms and formulations can be used and it can be discovered in depth. But for simplicity, LeakyReLU has been used for Hidden Layer [PyTorch LeakyReLU](https://pytorch.org/docs/stable/generated/torch.nn.LeakyReLU.html). The input layer and output have Linear activation [PyTorch Linear](https://pytorch.org/docs/stable/generated/torch.nn.Linear.html). Logsoftmax has been used to formulate the output [PyTorch LogSoftmax](https://pytorch.org/docs/stable/generated/torch.nn.LogSoftmax.html)
72+
73+
The implementation is in :
74+
75+
https://github.com/infinitecoder1729/mnist-dataset-classification/blob/0fa674e4325acf4e82ea8513c948062677d04baf/MNIST%20Classification%20Model..py#L20-L23
76+
77+
#### Defining the loss function :
78+
79+
Similar to above, many loss functions can be used to compute the loss but again for simplicity, NLLLoss i.e. Negatice Log Likelihood Loss has been used [PyTorch NLLLoss](https://pytorch.org/docs/stable/generated/torch.nn.NLLLoss.html)
80+
81+
https://github.com/infinitecoder1729/mnist-dataset-classification/blob/0fa674e4325acf4e82ea8513c948062677d04baf/MNIST%20Classification%20Model..py#L25
82+
83+
## Step 3 : Training the model on the dataset
84+

0 commit comments

Comments
 (0)