-
Notifications
You must be signed in to change notification settings - Fork 5.6k
/
Copy pathmetric_v1.go
106 lines (89 loc) · 3.17 KB
/
metric_v1.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
package prometheusremotewrite
import (
"fmt"
"math"
"time"
"github.com/prometheus/common/model"
"github.com/prometheus/prometheus/prompb"
"github.com/influxdata/telegraf"
"github.com/influxdata/telegraf/metric"
)
func (p *Parser) extractMetricsV1(ts *prompb.TimeSeries) ([]telegraf.Metric, error) {
t := time.Now()
// Convert each prometheus metrics to the corresponding telegraf metrics.
// You will get one telegraf metric with one field per prometheus metric
// for "simple" types like Gauge and Counter.
// However, since in prometheus remote write, a "complex" type is already
// broken down into multiple "simple" types metrics, you will still get
// multiple telegraf metrics per Histogram or Summary.
// One bucket of a histogram could also be split into multiple remote
// write requests, so we won't try to aggregate them here.
// However, for Native Histogram, you will get one telegraf metric with
// multiple fields.
metrics := make([]telegraf.Metric, 0, len(ts.Samples)+len(ts.Histograms))
tags := make(map[string]string, len(p.DefaultTags)+len(ts.Labels))
for key, value := range p.DefaultTags {
tags[key] = value
}
for _, l := range ts.Labels {
tags[l.Name] = l.Value
}
metricName := tags[model.MetricNameLabel]
if metricName == "" {
return nil, fmt.Errorf("metric name %q not found in tag-set or empty", model.MetricNameLabel)
}
delete(tags, model.MetricNameLabel)
for _, s := range ts.Samples {
if math.IsNaN(s.Value) {
continue
}
// In prometheus remote write,
// You won't know if it's a counter or gauge or a sub-counter in a histogram
fields := map[string]interface{}{"value": s.Value}
if s.Timestamp > 0 {
t = time.Unix(0, s.Timestamp*1000000)
}
m := metric.New(metricName, tags, fields, t)
metrics = append(metrics, m)
}
for _, hp := range ts.Histograms {
h := hp.ToFloatHistogram()
if hp.Timestamp > 0 {
t = time.Unix(0, hp.Timestamp*1000000)
}
fields := map[string]any{
"counter_reset_hint": uint64(h.CounterResetHint),
"schema": int64(h.Schema),
"zero_threshold": h.ZeroThreshold,
"zero_count": h.ZeroCount,
"count": h.Count,
"sum": h.Sum,
}
count := 0.0
iter := h.AllBucketIterator()
for iter.Next() {
bucket := iter.At()
count = count + bucket.Count
fields[fmt.Sprintf("%g", bucket.Upper)] = count
}
// expand positiveSpans and negativeSpans into fields
for i, span := range h.PositiveSpans {
fields[fmt.Sprintf("positive_span_%d_offset", i)] = int64(span.Offset)
fields[fmt.Sprintf("positive_span_%d_length", i)] = uint64(span.Length)
}
for i, span := range h.NegativeSpans {
fields[fmt.Sprintf("negative_span_%d_offset", i)] = int64(span.Offset)
fields[fmt.Sprintf("negative_span_%d_length", i)] = uint64(span.Length)
}
// expand positiveBuckets and negativeBuckets into fields
for i, bucket := range h.PositiveBuckets {
fields[fmt.Sprintf("positive_bucket_%d", i)] = bucket
}
for i, bucket := range h.NegativeBuckets {
fields[fmt.Sprintf("negative_bucket_%d", i)] = bucket
}
m := metric.New(metricName, tags, fields, t, telegraf.Histogram)
metrics = append(metrics, m)
}
return metrics, nil
}