Skip to content

Commit 46c6aff

Browse files
author
Documenter.jl
committed
build based on 174040a
1 parent 58efb99 commit 46c6aff

File tree

6 files changed

+17
-17
lines changed

6 files changed

+17
-17
lines changed

dev/api/index.html

Lines changed: 12 additions & 12 deletions
Large diffs are not rendered by default.

dev/index.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -19,4 +19,4 @@
1919
# Plot parameter profile x[1]
2020
using Plots
2121
plotly()
22-
plot(res_1)</code></pre><p><img src="https://github.com/insysbio/LikelihoodProfiler.jl/blob/master/img/plot_lin.png?raw=true" alt="plot_lin"/></p><h2 id="Intro"><a class="docs-heading-anchor" href="#Intro">Intro</a><a id="Intro-1"></a><a class="docs-heading-anchor-permalink" href="#Intro" title="Permalink"></a></h2><p>The reliability and predictability of a <strong>kinetic systems biology (SB) and systems pharmacology (SP) model</strong> depends on the calibration of model parameters. Experimental data can be insufficient to determine all the parameters unambiguously. This results in &quot;non-identifiable&quot; parameters and parameters identifiable within confidence intervals (CIs). The algorithms included in <strong>LikelihoodProfiler</strong> implement Profile Likelihood (PL) [2] method for parameters identification and can be applied to complex SB models. The results of the algorithms can be used to qualify and calibrate parameters or to reduce the model.</p><h2 id="Objective"><a class="docs-heading-anchor" href="#Objective">Objective</a><a id="Objective-1"></a><a class="docs-heading-anchor-permalink" href="#Objective" title="Permalink"></a></h2><p>The package introduces several original algorithms. The default algorithm <code>:CICO_ONE_PASS</code> has been developed in accordance with the following principles:</p><ul><li>The algorithms don&#39;t require the likelihood function to be differentiable. Hence, derivative-free or global optimization methods can be used to estimate CI endpoints.</li><li>The algorithms are designed to obtain CI endpoints and avoid the calculation of profiles as the most computationally expensive part of the analysis. </li><li>CI endpoints are estimates with some preset tolerance. Reasonable tolerance setup can also reduce the number of likelihood function calls and speed up the computations. </li><li>The algorithm are applicable for both finite and infinite CI.</li></ul><h2 id="Methods-overview"><a class="docs-heading-anchor" href="#Methods-overview">Methods overview</a><a id="Methods-overview-1"></a><a class="docs-heading-anchor-permalink" href="#Methods-overview" title="Permalink"></a></h2><p>This algorithms can be applied to complex kinetic models where function differentiability is not guaranteed and each likelihood estimation is computationally expensive. </p><p>The package introduces original &quot;one-pass&quot; algorithm: <strong>Confidence Intervals evaluation by Constrained Optimization</strong> [6] <code>:CICO_ONE_PASS</code> developed by the authors of this package. <code>:CICO_ONE_PASS</code> utilizes the <strong>Inequality-based Constrained Optimization</strong> [3-4] for efficient determination of confidence intervals and detection of “non-identifiable” parameters. </p><p>The &quot;multi-pass&quot; methods use extrapolation/interpolation of profile likelihood points: linear (<code>:LIN_EXTRAPOL</code>) and quadratic (<code>:QUADR_EXTRAPOL</code>) approaches. They are also efficient for both identifiable and non-identifiable parameters.</p><h2 id="References"><a class="docs-heading-anchor" href="#References">References</a><a id="References-1"></a><a class="docs-heading-anchor-permalink" href="#References" title="Permalink"></a></h2><ol><li>Wikipedia <a href="https://en.wikipedia.org/wiki/Identifiability_analysis">Identifiability_analysis</a></li><li>Kreutz C., et al. Profile Likelihood in Systems Biology. FEBS Journal 280(11), 2564-2571, 2013</li><li>Steven G. Johnson, The NLopt nonlinear-optimization package, <a href="http://ab-initio.mit.edu/nlopt">link</a></li><li>Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint, &quot;A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds,&quot; SIAM J. Numer. Anal. vol. 28, no. 2, p. 545-572 (1991)</li><li>Julia: A Fresh Approach to Numerical Computing. Jeff Bezanson, Alan Edelman, Stefan Karpinski and Viral B. Shah (2017) SIAM Review, 59: 65–98</li><li>Borisov I., Metelkin E. An Algorithm for Practical Identifiability Analysis and Confidence Intervals Evaluation Based on Constrained Optimization. 2018. October. ICSB2018. https://doi.org/10.13140/RG.2.2.18935.06563</li></ol></article><nav class="docs-footer"><a class="docs-footer-nextpage" href="methods/">Methods »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> on <span class="colophon-date" title="Thursday 30 January 2025 11:40">Thursday 30 January 2025</span>. Using Julia version 1.11.3.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
22+
plot(res_1)</code></pre><p><img src="https://github.com/insysbio/LikelihoodProfiler.jl/blob/master/img/plot_lin.png?raw=true" alt="plot_lin"/></p><h2 id="Intro"><a class="docs-heading-anchor" href="#Intro">Intro</a><a id="Intro-1"></a><a class="docs-heading-anchor-permalink" href="#Intro" title="Permalink"></a></h2><p>The reliability and predictability of a <strong>kinetic systems biology (SB) and systems pharmacology (SP) model</strong> depends on the calibration of model parameters. Experimental data can be insufficient to determine all the parameters unambiguously. This results in &quot;non-identifiable&quot; parameters and parameters identifiable within confidence intervals (CIs). The algorithms included in <strong>LikelihoodProfiler</strong> implement Profile Likelihood (PL) [2] method for parameters identification and can be applied to complex SB models. The results of the algorithms can be used to qualify and calibrate parameters or to reduce the model.</p><h2 id="Objective"><a class="docs-heading-anchor" href="#Objective">Objective</a><a id="Objective-1"></a><a class="docs-heading-anchor-permalink" href="#Objective" title="Permalink"></a></h2><p>The package introduces several original algorithms. The default algorithm <code>:CICO_ONE_PASS</code> has been developed in accordance with the following principles:</p><ul><li>The algorithms don&#39;t require the likelihood function to be differentiable. Hence, derivative-free or global optimization methods can be used to estimate CI endpoints.</li><li>The algorithms are designed to obtain CI endpoints and avoid the calculation of profiles as the most computationally expensive part of the analysis. </li><li>CI endpoints are estimates with some preset tolerance. Reasonable tolerance setup can also reduce the number of likelihood function calls and speed up the computations. </li><li>The algorithm are applicable for both finite and infinite CI.</li></ul><h2 id="Methods-overview"><a class="docs-heading-anchor" href="#Methods-overview">Methods overview</a><a id="Methods-overview-1"></a><a class="docs-heading-anchor-permalink" href="#Methods-overview" title="Permalink"></a></h2><p>This algorithms can be applied to complex kinetic models where function differentiability is not guaranteed and each likelihood estimation is computationally expensive. </p><p>The package introduces original &quot;one-pass&quot; algorithm: <strong>Confidence Intervals evaluation by Constrained Optimization</strong> [6] <code>:CICO_ONE_PASS</code> developed by the authors of this package. <code>:CICO_ONE_PASS</code> utilizes the <strong>Inequality-based Constrained Optimization</strong> [3-4] for efficient determination of confidence intervals and detection of “non-identifiable” parameters. </p><p>The &quot;multi-pass&quot; methods use extrapolation/interpolation of profile likelihood points: linear (<code>:LIN_EXTRAPOL</code>) and quadratic (<code>:QUADR_EXTRAPOL</code>) approaches. They are also efficient for both identifiable and non-identifiable parameters.</p><h2 id="References"><a class="docs-heading-anchor" href="#References">References</a><a id="References-1"></a><a class="docs-heading-anchor-permalink" href="#References" title="Permalink"></a></h2><ol><li>Wikipedia <a href="https://en.wikipedia.org/wiki/Identifiability_analysis">Identifiability_analysis</a></li><li>Kreutz C., et al. Profile Likelihood in Systems Biology. FEBS Journal 280(11), 2564-2571, 2013</li><li>Steven G. Johnson, The NLopt nonlinear-optimization package, <a href="http://ab-initio.mit.edu/nlopt">link</a></li><li>Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint, &quot;A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds,&quot; SIAM J. Numer. Anal. vol. 28, no. 2, p. 545-572 (1991)</li><li>Julia: A Fresh Approach to Numerical Computing. Jeff Bezanson, Alan Edelman, Stefan Karpinski and Viral B. Shah (2017) SIAM Review, 59: 65–98</li><li>Borisov I., Metelkin E. An Algorithm for Practical Identifiability Analysis and Confidence Intervals Evaluation Based on Constrained Optimization. 2018. October. ICSB2018. https://doi.org/10.13140/RG.2.2.18935.06563</li></ol></article><nav class="docs-footer"><a class="docs-footer-nextpage" href="methods/">Methods »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> on <span class="colophon-date" title="Thursday 30 January 2025 12:12">Thursday 30 January 2025</span>. Using Julia version 1.11.3.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>

0 commit comments

Comments
 (0)