Skip to content

Latest commit

 

History

History
 
 

benchmarks

Model Zoo Scripts

Training and inference scripts with TensorFlow optimizations that use the Intel® oneAPI Deep Neural Network Library (Intel® oneDNN) and Intel® Extension for PyTorch.

Prerequisites

The model documentation in the tables below have information on the prerequisites to run each model. The model scripts run on Linux. Certain models are also able to run using bare metal on Windows. For more information and a list of models that are supported on Windows, see the documentation here.

For information on running more advanced use cases using the workload containers see the: advanced options documentation.

TensorFlow Use Cases

Use Case Model Mode Intel® Developer Catalog Model Documentation Benchmark/Test Dataset
Image Recognition DenseNet169 Inference Model Containers: FP32
Model Packages: FP32
FP32 ImageNet 2012
Image Recognition Inception V3 Inference Model Containers: Int8 FP32
Model Packages: Int8 FP32
Int8 FP32 ImageNet 2012
Image Recognition Inception V4 Inference Model Containers: Int8 FP32
Model Packages: Int8 FP32
Int8 FP32 ImageNet 2012
Image Recognition MobileNet V1* Inference Model Containers: Int8 FP32
Model Packages: Int8 FP32
Int8 FP32 BFloat16 ImageNet 2012
Image Recognition ResNet 101 Inference Model Containers: Int8 FP32
Model Packages: Int8 FP32
Int8 FP32 ImageNet 2012
Image Recognition ResNet 50 Inference Model Containers: Int8 FP32
Model Packages: Int8 FP32
Int8 FP32 ImageNet 2012
Image Recognition ResNet 50v1.5 Inference Model Containers: Int8 FP32 BFloat16
Model Packages: Int8 FP32 BFloat16
Int8 FP32 BFloat16 ImageNet 2012
Image Recognition ResNet 50v1.5 Training Model Containers: FP32 BFloat16
Model Packages: FP32 BFloat16
FP32 BFloat16 ImageNet 2012
Image Segmentation 3D U-Net Inference Model Containers: FP32
Model Packages: FP32
FP32 BRATS 2018
Image Segmentation 3D U-Net MLPerf* Inference FP32 BFloat16 BRATS 2019
Image Segmentation MaskRCNN Inference Model Containers: FP32
Model Packages: FP32
FP32 MS COCO 2014
Image Segmentation UNet Inference Model Containers: FP32
Model Packages: FP32
FP32
Language Modeling BERT Inference Model Containers: FP32 BFloat16
Model Packages: FP32 BFloat16
FP32 BFloat16 SQuAD
Language Modeling BERT Training Model Containers: FP32 BFloat16
Model Packages: FP32 BFloat16
FP32 BFloat16 SQuAD and MRPC
Language Translation BERT Inference FP32 MRPC
Language Translation GNMT* Inference Model Containers: FP32
Model Packages: FP32
FP32 MLPerf GNMT model benchmarking dataset
Language Translation Transformer_LT_mlperf* Training Model Containers: FP32 BFloat16
Model Packages: FP32 BFloat16
FP32 BFloat16 WMT English-German dataset
Language Translation Transformer_LT_mlperf* Inference FP32 BFloat16 Int8 WMT English-German data
Language Translation Transformer_LT_Official Inference Model Containers: FP32
Model Packages: FP32
FP32 WMT English-German dataset
Object Detection Faster R-CNN Inference Model Containers: Int8 FP32
Model Packages: Int8 FP32
Int8 FP32 COCO 2017 validation dataset
Object Detection R-FCN Inference Model Containers: Int8 FP32
Model Packages: Int8 FP32
Int8 FP32 COCO 2017 validation dataset
Object Detection SSD-MobileNet* Inference Model Containers: Int8 FP32
Model Packages: Int8 FP32
Int8 FP32 BFloat16 COCO 2017 validation dataset
Object Detection SSD-ResNet34* Inference Model Containers: Int8 FP32
Model Packages: Int8 FP32
Int8 FP32 BFloat16 COCO 2017 validation dataset
Object Detection SSD-ResNet34 Training Model Containers: FP32 BFloat16
Model Packages: FP32 BFloat16
FP32 BFloat16 COCO 2017 training dataset
Recommendation DIEN Inference FP32 BFloat16 DIEN dataset
Recommendation DIEN Training FP32 DIEN dataset
Recommendation NCF Inference Model Containers: FP32
Model Packages: FP32
FP32 MovieLens 1M
Recommendation Wide & Deep Inference Model Containers: FP32
Model Packages: FP32
FP32 Census Income dataset
Recommendation Wide & Deep Large Dataset Inference Model Containers: Int8 FP32
Model Packages: Int8 FP32
Int8 FP32 Large Kaggle Display Advertising Challenge dataset
Recommendation Wide & Deep Large Dataset Training Model Containers: FP32
Model Packages: FP32
FP32 Large Kaggle Display Advertising Challenge dataset
Text-to-Speech WaveNet Inference Model Containers: FP32
Model Packages: FP32
FP32

TensorFlow Serving Use Cases

Use Case Model Mode Model Documentation
Image Recognition Inception V3 Inference FP32
Image Recognition ResNet 50v1.5 Inference FP32
Language Translation Transformer_LT_Official Inference FP32
Object Detection SSD-MobileNet Inference FP32

PyTorch Use Cases

Use Case Model Mode Model Documentation
Image Recognition GoogLeNet Inference FP32 BFloat16
Image Recognition Inception v3 Inference FP32 BFloat16
Image Recognition MNASNet 0.5 Inference FP32 BFloat16
Image Recognition MNASNet 1.0 Inference FP32 BFloat16
Image Recognition ResNet 50 Inference FP32 Int8 BFloat16
Image Recognition ResNet 50 Training FP32 BFloat16
Image Recognition ResNet 101 Inference FP32 BFloat16
Image Recognition ResNet 152 Inference FP32 BFloat16
Image Recognition ResNext 32x4d Inference FP32 BFloat16
Image Recognition ResNext 32x16d Inference FP32 Int8 BFloat16
Image Recognition VGG-11 Inference FP32 BFloat16
Image Recognition VGG-11 with batch normalization Inference FP32 BFloat16
Image Recognition Wide ResNet-50-2 Inference FP32 BFloat16
Image Recognition Wide ResNet-101-2 Inference FP32 BFloat16
Language Modeling BERT base Inference FP32 BFloat16
Language Modeling BERT large Inference FP16 FP32 Int8 BFloat16 BFloat32
Language Modeling BERT large Training FP32 BFloat16
Language Modeling DistilBERT base Inference FP32 BFloat16
Language Modeling RNN-T Inference FP32 BFloat16
Language Modeling RNN-T Training FP32 BFloat16
Language Modeling RoBERTa base Inference FP32 BFloat16
Language Modeling T5 Inference FP32 Int8
Object Detection Faster R-CNN ResNet50 FPN Inference FP32 BFloat16
Object Detection Mask R-CNN Inference FP32 BFloat16
Object Detection Mask R-CNN Training FP32 BFloat16
Object Detection Mask R-CNN ResNet50 FPN Inference FP32 BFloat16
Object Detection RetinaNet ResNet-50 FPN Inference FP32 BFloat16
Object Detection SSD-ResNet34 Inference FP32 Int8 BFloat16
Object Detection SSD-ResNet34 Training FP32 BFloat16
Recommendation DLRM Inference FP32 Int8 BFloat16
Recommendation DLRM Training FP32 BFloat16
Shot Boundary Detection TransNetV2 Inference FP32 BFloat16
AI Drug Design (AIDD) AlphaFold2 Inference FP32

*Means the model belongs to MLPerf models and will be supported long-term.