Skip to content

Commit 2ebec03

Browse files
authored
optimize phi-3-mini-128 (#10959)
1 parent dfa3147 commit 2ebec03

File tree

2 files changed

+43
-0
lines changed

2 files changed

+43
-0
lines changed

python/llm/src/ipex_llm/transformers/convert.py

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1508,6 +1508,8 @@ def safe_bmm_fwd(*args, **kwargs):
15081508
# for phi-3
15091509
modeling_module_name = model.__class__.__module__
15101510
module = importlib.import_module(modeling_module_name)
1511+
from ipex_llm.transformers.models.phi3 import su_scaled_rope_forward
1512+
convert_forward(model, module.Phi3SuScaledRotaryEmbedding, su_scaled_rope_forward)
15111513
from ipex_llm.transformers.models.phi3 import attention_forward
15121514
convert_forward(model, module.Phi3Attention, attention_forward)
15131515
from ipex_llm.transformers.models.phi3 import mlp_forward

python/llm/src/ipex_llm/transformers/models/phi3.py

Lines changed: 41 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -57,6 +57,47 @@ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
5757
return q_embed, k_embed
5858

5959

60+
def su_scaled_rope_forward(self, x: torch.Tensor, position_ids: torch.Tensor, seq_len=None):
61+
if self.inv_freq is None:
62+
short_ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
63+
inv_freq_shape = torch.arange(0, self.dim, 2,
64+
dtype=torch.int64, device=x.device).float() / self.dim
65+
self.inv_freq = 1.0 / (short_ext_factors * self.base**inv_freq_shape)
66+
67+
long_ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
68+
self.register_buffer("long_inv_freq", None, persistent=False)
69+
self.long_inv_freq = 1.0 / (long_ext_factors * self.base**inv_freq_shape)
70+
71+
seq_len = seq_len if seq_len is not None else torch.max(position_ids) + 1
72+
if seq_len > self.original_max_position_embeddings:
73+
inv_freq = self.long_inv_freq
74+
else:
75+
inv_freq = self.inv_freq
76+
77+
inv_freq_expanded = inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
78+
position_ids_expanded = position_ids[:, None, :].float()
79+
80+
# Force float32 since bfloat16 loses precision on long contexts
81+
# See https://github.com/huggingface/transformers/pull/29285
82+
device_type = x.device.type
83+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
84+
with torch.autocast(device_type=device_type, enabled=False):
85+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
86+
emb = torch.cat((freqs, freqs), dim=-1)
87+
88+
scale = self.max_position_embeddings / self.original_max_position_embeddings
89+
if scale <= 1.0:
90+
scaling_factor = 1.0
91+
else:
92+
scaling_factor = math.sqrt(
93+
1 + math.log(scale) / math.log(self.original_max_position_embeddings)
94+
)
95+
96+
cos = emb.cos() * scaling_factor
97+
sin = emb.sin() * scaling_factor
98+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
99+
100+
60101
def attention_forward(
61102
self,
62103
hidden_states: torch.Tensor,

0 commit comments

Comments
 (0)