|
| 1 | +#!/usr/bin/env python3 |
| 2 | + |
| 3 | +### |
| 4 | +### Copyright (C) 2023 Intel Corporation |
| 5 | +### |
| 6 | +### SPDX-License-Identifier: BSD-3-Clause |
| 7 | +### |
| 8 | + |
| 9 | +### |
| 10 | +### kate: syntax python; |
| 11 | +### |
| 12 | + |
| 13 | +import argparse |
| 14 | +import glob |
| 15 | +import lxml.etree as et |
| 16 | +import numpy as np |
| 17 | +import matplotlib.pyplot as plt |
| 18 | +import os |
| 19 | +import re |
| 20 | +import sys |
| 21 | + |
| 22 | +__MYPATH__ = os.path.abspath(os.path.dirname(__file__)) |
| 23 | +sys.path.append(os.path.dirname(__MYPATH__)) |
| 24 | + |
| 25 | +from lib.metrics2.psnr import trend_models |
| 26 | + |
| 27 | +def loadxml(filenames): |
| 28 | + for filename in filenames: |
| 29 | + if os.path.isdir(filename): |
| 30 | + search = os.path.join(filename, "**", "results.xml") |
| 31 | + yield from loadxml(glob.glob(search, recursive = True)) |
| 32 | + else: |
| 33 | + yield et.parse(filename).getroot() |
| 34 | + |
| 35 | +# script command-line options |
| 36 | +parser = argparse.ArgumentParser() |
| 37 | +parser.add_argument("files", nargs = "+", type = str) |
| 38 | +parser.add_argument("--case", nargs = "+", default = []) |
| 39 | +parser.add_argument("--codec", nargs="+", default = []) |
| 40 | +parser.add_argument("--rc", nargs="+", default = []) |
| 41 | +parser.add_argument("--gop", nargs="+", type = int, default = []) |
| 42 | +parser.add_argument("--bf", nargs="+", type = int, default = []) |
| 43 | +parser.add_argument("--tu", nargs="+", type = int, default = []) |
| 44 | +parser.add_argument("--component", nargs="+", default = []) |
| 45 | +parser.add_argument("--platform", nargs="+", default = []) |
| 46 | +parser.add_argument("--bias", type = float, default = 0.0) |
| 47 | +parser.add_argument("--tolerance", type = float, default = 0.0) |
| 48 | +parser.add_argument("--failures", action = "store_true") |
| 49 | +parser.add_argument("--add-trendline", nargs="+", type = str, default = []) |
| 50 | + |
| 51 | +# initialize |
| 52 | +plt.rcParams['figure.figsize'] = [20, 10] |
| 53 | +args = parser.parse_args() |
| 54 | +trendlines = dict() |
| 55 | +plotdata = dict() |
| 56 | +minx = 10000 |
| 57 | +maxx = 0 |
| 58 | +roots = loadxml(args.files) |
| 59 | + |
| 60 | +# add user defined trendline |
| 61 | +if len(args.add_trendline): |
| 62 | + trendname = args.add_trendline[0] # model function name |
| 63 | + trendopts = [float(o) for o in args.add_trendline[1:]] # model function opts |
| 64 | + trendlines.setdefault(trendname, set()).add( |
| 65 | + tuple(["", "", "", args.tolerance+5.0]) + tuple(trendopts)) |
| 66 | + |
| 67 | +# filter and aggregate test results from xml |
| 68 | +for root in roots: |
| 69 | + platform = root.get("platform") |
| 70 | + driver = root.get("driver") |
| 71 | + suite = root.get("name") |
| 72 | + |
| 73 | + if len(args.platform) and platform not in args.platform: |
| 74 | + continue |
| 75 | + |
| 76 | + for testcase in root: |
| 77 | + if testcase.get("skipped") == "1": continue |
| 78 | + |
| 79 | + # disassemble test case name and classname |
| 80 | + name = testcase.get("name") |
| 81 | + rc = name.split('.')[0] |
| 82 | + pattern = re.compile("(?P<key>[\w]+)=(?P<value>[\S\s]*?)(,|\))", re.VERBOSE) |
| 83 | + params = {m.group("key"): m.group("value") for m in pattern.finditer(name)} |
| 84 | + case = params["case"] |
| 85 | + tu = int(params.get("quality", -1)) |
| 86 | + bf = int(params.get("bframes", -1)) |
| 87 | + gop = int(params.get("gop", -1)) |
| 88 | + classname = testcase.get("classname") |
| 89 | + parts = classname.split('.') |
| 90 | + component = parts[2] |
| 91 | + codec = '.'.join(parts[4:]) |
| 92 | + |
| 93 | + # check for failure tag |
| 94 | + failure = testcase.xpath("failure") |
| 95 | + |
| 96 | + # filter testcase |
| 97 | + if len(args.codec) and codec not in args.codec: |
| 98 | + continue |
| 99 | + if len(args.rc) and rc not in args.rc: |
| 100 | + continue |
| 101 | + if len(args.case) and params["case"] not in args.case: |
| 102 | + continue |
| 103 | + if len(args.component) and component not in args.component: |
| 104 | + continue |
| 105 | + if len(args.gop) and gop not in args.gop: |
| 106 | + continue |
| 107 | + if len(args.tu) and tu not in args.tu: |
| 108 | + continue |
| 109 | + if len(args.bf) and bf not in args.bf: |
| 110 | + continue |
| 111 | + if args.failures and len(failure) < 1: |
| 112 | + continue |
| 113 | + |
| 114 | + # convert details to key:value |
| 115 | + details = dict() |
| 116 | + for detail in testcase.iter("detail"): |
| 117 | + details[detail.get("name")] = detail.get("value") |
| 118 | + |
| 119 | + # find necessary trendline datapoints |
| 120 | + bias = float(details.get("compression:bias", 0.0)) + args.bias |
| 121 | + tolerance = float(details.get("psnr:tolerance", 5.0)) + args.tolerance |
| 122 | + psnr = float(details.get("psnr:actual", -1.0)) |
| 123 | + log = float(details.get("compression:log", -1.0)) |
| 124 | + label = f"{platform}:{rc}:{codec}:{case}:{component}:gop={gop}:bf={bf}:tu={tu}:bias={bias}" |
| 125 | + |
| 126 | + # missing datapoints |
| 127 | + if psnr < 0 or log < 0: continue |
| 128 | + |
| 129 | + minx = min(minx, log+bias) |
| 130 | + maxx = max(maxx, log+bias) |
| 131 | + |
| 132 | + data = plotdata.setdefault(label, dict()) |
| 133 | + data.setdefault("ydata", list()).append(psnr) |
| 134 | + data.setdefault("xdata", list()).append(log+bias) |
| 135 | + |
| 136 | + trendname = details.get("model:trend:name", None) |
| 137 | + trendopts = details.get("model:trend:opts", None) |
| 138 | + if trendname is not None and trendopts is not None: |
| 139 | + trendlines.setdefault(trendname, set()).add(tuple([case, codec, gop, tolerance]) + tuple(eval(trendopts))) |
| 140 | + |
| 141 | +for label, data in plotdata.items(): |
| 142 | + plt.scatter(data["xdata"], data["ydata"], label = label) |
| 143 | + |
| 144 | +for fn, trendline in trendlines.items(): |
| 145 | + for opts in trendline: |
| 146 | + case, codec, gop, tolerance, *opt = opts |
| 147 | + sopt = tuple(float(f"{p:.2f}") for p in opt) |
| 148 | + label = f"REF:{codec}:{case}:gop={gop} {fn}{sopt} T={tolerance}" |
| 149 | + xpower = np.linspace(min(0, minx), max(maxx, 10), 100) |
| 150 | + ypower = trend_models[fn](xpower, *opt) |
| 151 | + ypower = [y-tolerance for y in ypower] |
| 152 | + plt.plot(xpower, ypower, label = label, linestyle = "dashed", linewidth = 3) |
| 153 | + |
| 154 | +plt.ylim([15, 80]) |
| 155 | +plt.xlim([0, 11]) |
| 156 | +plt.ylabel("PSNR") |
| 157 | +plt.xlabel("Compression Ratio (ln x)") |
| 158 | +plt.legend() |
| 159 | +plt.show() |
| 160 | + |
| 161 | + |
0 commit comments