This repository has been archived by the owner on Nov 3, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
149 lines (122 loc) · 3.89 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import torch.optim as optim
import torch
import numpy as np
from torchvision import datasets
from torch.utils.data.sampler import SubsetRandomSampler
from model import Net, transform
classes = ['english', 'math']
batch_size = 32
test_size = 0.3
valid_size = 0.1
data = datasets.ImageFolder('data', transform=transform)
# For test
num_data = len(data)
print(num_data)
indices_data = list(range(num_data))
np.random.shuffle(indices_data)
split_tt = int(np.floor(test_size * num_data))
print(split_tt)
train_idx, test_idx = indices_data[split_tt:], indices_data[:split_tt]
# For Valid
num_train = len(train_idx)
indices_train = list(range(num_train))
np.random.shuffle(indices_train)
split_tv = int(np.floor(valid_size * num_train))
train_new_idx, valid_idx = indices_train[split_tv:], indices_train[:split_tv]
train_loader = torch.utils.data.DataLoader(
data,
batch_size=batch_size,
sampler=SubsetRandomSampler(train_new_idx),
num_workers=1)
valid_loader = torch.utils.data.DataLoader(
data,
batch_size=batch_size,
sampler=SubsetRandomSampler(valid_idx),
num_workers=1)
test_loader = torch.utils.data.DataLoader(
data,
sampler=SubsetRandomSampler(test_idx),
batch_size=batch_size,
num_workers=1)
print(
len(test_loader) *
batch_size +
len(valid_loader) *
batch_size +
len(train_loader) *
batch_size)
for batch in valid_loader:
print(batch[0].size())
model = Net()
print(model)
# loss function
criterion = torch.nn.CrossEntropyLoss()
# optimizer
optimizer = torch.optim.SGD(model.parameters(), lr=0.003, momentum=0.9)
n_epochs = 10
valid_loss_min = np.Inf
for epoch in range(1, n_epochs + 1):
train_loss = 0.0
valid_loss = 0.0
# train
model.train()
for data, target in train_loader:
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
train_loss += loss.item() * data.size(0)
# validation
model.eval()
for data, target in valid_loader:
output = model(data)
loss = criterion(output, target)
valid_loss += loss.item() * data.size(0)
train_loss = train_loss / len(train_loader.dataset)
valid_loss = valid_loss / len(valid_loader.dataset)
print('Epoch: {}/{} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format(
epoch, n_epochs, train_loss, valid_loss))
# save model
if valid_loss <= valid_loss_min:
print(
'Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...'.format(
valid_loss_min,
valid_loss))
torch.save(model.state_dict(), 'model.pt')
valid_loss_min = valid_loss
# track test loss
test_loss = 0.0
class_correct = list(0. for i in range(2))
class_total = list(0. for i in range(2))
model.eval()
i = 1
len(test_loader)
for data, target in test_loader:
i += 1
if len(target) != batch_size:
continue
output = model(data)
loss = criterion(output, target)
test_loss += loss.item() * data.size(0)
_, pred = torch.max(output, 1)
correct_tensor = pred.eq(target.data.view_as(pred))
correct = np.squeeze(correct_tensor.numpy())
for i in range(batch_size):
label = target.data[i]
class_correct[label] += correct[i].item()
class_total[label] += 1
test_loss = test_loss / len(test_loader.dataset)
print('Test Loss: {:.6f}\n'.format(test_loss))
for i in range(2):
if class_total[i] > 0:
print('Test Accuracy of %5s: %2d%% (%2d/%2d)' % (
classes[i], 100 * class_correct[i] / class_total[i],
np.sum(class_correct[i]), np.sum(class_total[i])))
else:
print(
'Test Accuracy of %5s: N/A (no training examples)' %
(classes[i]))
print('\nTest Accuracy (Overall): %2d%% (%2d/%2d)' % (
100. * np.sum(class_correct) / np.sum(class_total),
np.sum(class_correct), np.sum(class_total)))