-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathnnet.sql
231 lines (215 loc) · 6.7 KB
/
nnet.sql
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
DROP DATABASE IF EXISTS nnet;
CREATE DATABASE nnet;
USE nnet;
CREATE TABLE Dataset (
RowIndex INT NOT NULL,
ColumnIndex INT NOT NULL,
CellValue DOUBLE(10, 7),
PRIMARY KEY (RowIndex, ColumnIndex)
);
INSERT INTO Dataset VALUES
-- Feature #1, Feature #2, Feature #3 (for Bias, always equal to 1)
(1, 1, 0.9845149), (1, 2, 1.9521154), (1, 3, 1),
(2, 1, 1.6520906), (2, 2, 2.1201087), (2, 3, 1),
(3, 1, 1.7373078), (3, 2, 4.4254623), (3, 3, 1),
(4, 1, 2.4703492), (4, 2, 4.0986291), (4, 3, 1),
(5, 1, 2.1217847), (5, 2, 1.2001356), (5, 3, 1),
(6, 1, 3.1946682), (6, 2, -0.3371622), (6, 3, 1),
(7, 1, 3.9384182), (7, 2, -0.4500954), (7, 3, 1),
(8, 1, 2.0657675), (8, 2, 2.6835342), (8, 3, 1),
(9, 1, 2.0270853), (9, 2, 1.3259955), (9, 3, 1),
(10, 1, -0.7300001), (10, 2, 6.2545627), (10, 3, 1),
(11, 1, 2.2065608), (11, 2, 5.5061672), (11, 3, 1),
(12, 1, -0.2765253), (12, 2, 5.0812777), (12, 3, 1),
(13, 1, 1.1312175), (13, 2, 4.6819498), (13, 3, 1),
(14, 1, 1.1844704), (14, 2, 0.3188140), (14, 3, 1),
(15, 1, 1.8407063), (15, 2, 3.5616223), (15, 3, 1),
(16, 1, 1.2893378), (16, 2, 3.4496916), (16, 3, 1),
(17, 1, 0.5889433), (17, 2, 4.0014846), (17, 3, 1),
(18, 1, 2.4576092), (18, 2, 0.2128536), (18, 3, 1),
(19, 1, 0.0884843), (19, 2, 2.3229909), (19, 3, 1),
(20, 1, 0.8730512), (20, 2, 4.7143858), (20, 3, 1),
(21, 1, 1.4209454), (21, 2, 0.5349225), (21, 3, 1),
(22, 1, 2.4116339), (22, 2, 1.6042368), (22, 3, 1),
(23, 1, 1.1479692), (23, 2, 0.9496091), (23, 3, 1),
(24, 1, 1.3828071), (24, 2, 0.5381105), (24, 3, 1),
(25, 1, 2.7843581), (25, 2, 1.0266466), (25, 3, 1),
(26, 1, 3.2460247), (26, 2, 2.8494217), (26, 3, 1),
(27, 1, 0.4666179), (27, 2, 3.8657130), (27, 3, 1),
(28, 1, -1.5767197), (28, 2, 4.9574059), (28, 3, 1),
(29, 1, 2.2326937), (29, 2, 0.4958827), (29, 3, 1),
(30, 1, 2.8438281), (30, 2, 3.3265094), (30, 3, 1),
(31, 1, 2.2635425), (31, 2, 1.8743027), (31, 3, 1),
(32, 1, 0.0808035), (32, 2, 4.6906898), (32, 3, 1),
(33, 1, 1.4201333), (33, 2, 4.6374617), (33, 3, 1),
(34, 1, -0.6376278), (34, 2, 4.0910470), (34, 3, 1),
(35, 1, 2.5090493), (35, 2, 5.7731461), (35, 3, 1),
(36, 1, 1.7437150), (36, 2, 0.9538290), (36, 3, 1),
(37, 1, 2.1821796), (37, 2, 1.2996530), (37, 3, 1),
(38, 1, 1.1203136), (38, 2, 5.7580608), (38, 3, 1),
(39, 1, 2.5209300), (39, 2, -0.6385800), (39, 3, 1),
(40, 1, 0.4654649), (40, 2, 3.1231551), (40, 3, 1),
(41, 1, 0.4250692), (41, 2, 1.3604459), (41, 3, 1),
(42, 1, 1.9263585), (42, 2, 4.1524301), (42, 3, 1),
(43, 1, 1.2421212), (43, 2, -0.8286189), (43, 3, 1),
(44, 1, 0.8901177), (44, 2, 1.7984901), (44, 3, 1),
(45, 1, 1.0220286), (45, 2, 4.1166035), (45, 3, 1),
(46, 1, 0.7847825), (46, 2, 1.8670604), (46, 3, 1),
(47, 1, 3.5435197), (47, 2, 2.7935528), (47, 3, 1),
(48, 1, -0.0722829), (48, 2, 2.8837694), (48, 3, 1),
(49, 1, 3.2340471), (49, 2, 0.7177388), (49, 3, 1),
(50, 1, 0.6283579), (50, 2, 4.4601363), (50, 3, 1);
CREATE TABLE DatasetClass (
RowIndex INT NOT NULL,
Class INT,
PRIMARY KEY (RowIndex)
);
INSERT INTO DatasetClass VALUES
(1, 1),
(2, 1),
(3, 0),
(4, 0),
(5, 1),
(6, 1),
(7, 1),
(8, 1),
(9, 1),
(10, 0),
(11, 0),
(12, 0),
(13, 0),
(14, 1),
(15, 0),
(16, 0),
(17, 0),
(18, 1),
(19, 0),
(20, 0),
(21, 1),
(22, 1),
(23, 1),
(24, 1),
(25, 1),
(26, 0),
(27, 0),
(28, 0),
(29, 1),
(30, 0),
(31, 1),
(32, 0),
(33, 0),
(34, 0),
(35, 0),
(36, 1),
(37, 1),
(38, 0),
(39, 1),
(40, 0),
(41, 1),
(42, 0),
(43, 1),
(44, 1),
(45, 0),
(46, 1),
(47, 1),
(48, 0),
(49, 1),
(50, 0);
CREATE TABLE Parameters (
RowIndex INT NOT NULL,
ColumnIndex INT NOT NULL,
Weight DECIMAL(10, 7),
PRIMARY KEY (RowIndex, ColumnIndex)
);
INSERT INTO Parameters VALUES
(1, 1, RAND(123) - 0.5), -- Weight #1
(2, 1, RAND(234) - 0.5), -- Weight #2
(3, 1, RAND(345) - 0.5); -- Bias
DELIMITER //
CREATE FUNCTION SIGMOID(x DECIMAL(10, 7))
RETURNS DECIMAL(10, 7)
READS SQL DATA
DETERMINISTIC
BEGIN
RETURN 1 / (1 + EXP(-x));
END//
CREATE FUNCTION CLIP(x DECIMAL(10, 7), MinimumValue DECIMAL(10, 7), MaximumValue DECIMAL(10, 7))
RETURNS DECIMAL(10, 7)
READS SQL DATA
DETERMINISTIC
BEGIN
RETURN LEAST(GREATEST(x, MinimumValue), MaximumValue);
END//
CREATE FUNCTION CROSSENTROPY(Target INT, Output DECIMAL(10, 7))
RETURNS DECIMAL(10, 7)
READS SQL DATA
DETERMINISTIC
BEGIN
RETURN -(
Target * LOG(CLIP(Output, 1e-7, 1 - 1e-7)) +
(1 - Target) * LOG(CLIP(1 - Output, 1e-7, 1 - 1e-7))
);
END//
CREATE FUNCTION GRAD_CROSSENTROPY(Target INT, Output DECIMAL(10, 7))
RETURNS DECIMAL(20, 7)
READS SQL DATA
DETERMINISTIC
BEGIN
RETURN -Target / CLIP(Output, 1e-7, 1 - 1e-7) +
(1 - Target) / CLIP(1 - Output, 1e-7, 1 - 1e-7);
END//
CREATE PROCEDURE TrainNetwork(Epochs INT, Step DECIMAL(10, 7))
BEGIN
DECLARE i INT;
SET i = 1;
WHILE i <= Epochs DO
SET i = i + 1;
UPDATE Parameters
LEFT JOIN (
SELECT
Dataset.ColumnIndex,
AVG(R.IncompleteGradient * CellValue) as Gradient
FROM(
SELECT
Result.RowIndex,
Result.ColumnIndex,
-- Cannot compute full gradient, because we need to make a dot
-- product procedure which involves grouping operartion with
-- the dataset table.
GRAD_CROSSENTROPY(DatasetClass.Class, Output) * Output * (1 - Output) as IncompleteGradient
FROM (
-- Compute output from the network
SELECT
Dataset.RowIndex,
Parameters.ColumnIndex,
SIGMOID(SUM(Weight * CellValue)) as Output
FROM Dataset
CROSS JOIN Parameters ON Dataset.ColumnIndex = Parameters.RowIndex
GROUP BY Dataset.RowIndex, Parameters.ColumnIndex
) as Result
LEFT JOIN DatasetClass
ON DatasetClass.RowIndex = Result.RowIndex
) as R
CROSS JOIN Dataset ON Dataset.RowIndex = R.RowIndex
GROUP BY R.ColumnIndex, Dataset.ColumnIndex
) as Updates
ON Updates.ColumnIndex = Parameters.RowIndex
SET Weight = Weight - Step * Updates.Gradient;
END WHILE;
END//
DELIMITER ;
CALL TrainNetwork(7000, 0.01);
-- Check the prediction accuracy score
SELECT
AVG(CAST(Class AS UNSIGNED) = ROUND(Result.Output)) as Accuracy
FROM (
SELECT
Dataset.RowIndex,
SIGMOID(SUM(Weight * CellValue)) as Output
FROM Dataset
CROSS JOIN Parameters
ON Dataset.ColumnIndex = Parameters.RowIndex
GROUP BY Dataset.RowIndex, Parameters.ColumnIndex
) as Result
LEFT JOIN DatasetClass
ON DatasetClass.RowIndex = Result.RowIndex;