-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathdqn_cartpole.py
149 lines (126 loc) · 6 KB
/
dqn_cartpole.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import tensorflow as tf
import numpy as np
import gym
class ReplayBuffer:
def __init__(self, obs_dim, size):
self.obs1_buf = np.zeros([size, obs_dim], dtype=np.float32)
self.obs2_buf = np.zeros([size, obs_dim], dtype=np.float32)
self.acts_buf = np.zeros(size, dtype=np.int32)
self.rews_buf = np.zeros(size, dtype=np.float32)
self.done_buf = np.zeros(size, dtype=np.float32)
self.ptr = 0
self.size = 0
self.max_size = size
def store(self, obs, act, rew, next_obs, done):
self.obs1_buf[self.ptr] = obs
self.obs2_buf[self.ptr] = next_obs
self.acts_buf[self.ptr] = act
self.rews_buf[self.ptr] = rew
self.done_buf[self.ptr] = done
self.ptr = (self.ptr+1) % self.max_size
self.size = min(self.size+1, self.max_size)
def sample_batch(self, batch_size=32):
idxs = np.random.randint(0, self.size, size=batch_size)
return dict(obs1=self.obs1_buf[idxs],
obs2=self.obs2_buf[idxs],
acts=self.acts_buf[idxs],
rews=self.rews_buf[idxs],
done=self.done_buf[idxs])
def mlp(x, hidden_sizes=(32,32), activation=tf.tanh):
for size in hidden_sizes:
x = tf.layers.dense(x, units=size, activation=activation)
return x
def train(env_name='CartPole-v0', hidden_dim=32, n_layers=1,
lr=1e-3, gamma=0.99, n_epochs=50, steps_per_epoch=5000,
batch_size=32, target_update_freq=2500, final_epsilon=0.05,
finish_decay=50000, replay_size=25000, steps_before_training=5000
):
env, test_env = gym.make(env_name), gym.make(env_name)
obs_dim = env.observation_space.shape[0]
n_acts = env.action_space.n
replay_buffer = ReplayBuffer(obs_dim=obs_dim, size=replay_size)
# make model
with tf.variable_scope('main'):
obs_ph = tf.placeholder(shape=(None, obs_dim), dtype=tf.float32)
net = mlp(obs_ph, hidden_sizes=[hidden_dim]*n_layers)
q_vals = tf.layers.dense(net, units=n_acts, activation=None)
with tf.variable_scope('target'):
obs_targ_ph = tf.placeholder(shape=(None, obs_dim), dtype=tf.float32)
net = mlp(obs_targ_ph, hidden_sizes=[hidden_dim]*n_layers)
q_targ = tf.layers.dense(net, units=n_acts, activation=None)
# make loss
act_ph = tf.placeholder(shape=(None,), dtype=tf.int32)
rew_ph = tf.placeholder(shape=(None,), dtype=tf.float32)
done_ph = tf.placeholder(shape=(None,), dtype=tf.float32)
action_one_hots = tf.one_hot(act_ph, n_acts)
q_a = tf.reduce_sum(action_one_hots * q_vals, axis=1)
target = rew_ph + gamma * (1 - done_ph) * tf.stop_gradient(tf.reduce_max(q_targ, axis=1))
loss = tf.reduce_mean((q_a - target)**2)
# update op for target network
main_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='main')
target_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='target')
assign_ops = [tf.assign(target_var, main_var) for target_var, main_var in zip(target_vars, main_vars)]
target_update_op = tf.group(*assign_ops)
# make train op
train_op = tf.train.AdamOptimizer(learning_rate=lr).minimize(loss)
sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
def get_action(obs, eps):
if np.random.rand() < eps:
return np.random.randint(n_acts)
else:
cur_q = sess.run(q_vals, feed_dict={obs_ph: obs.reshape(1,-1)})
return np.argmax(cur_q)
def test_q(n_test_eps=10):
ep_rets, ep_lens = [], []
for _ in range(n_test_eps):
obs, rew, done, ep_ret, ep_len = test_env.reset(), 0, False, 0, 0
while not(done):
env.render()
obs, rew, done, _ = test_env.step(get_action(obs, final_epsilon))
ep_ret += rew
ep_len += 1
ep_rets.append(ep_ret)
ep_lens.append(ep_len)
return np.mean(ep_rets), np.mean(ep_lens)
obs, rew, done, epsilon, ep_ret, ep_len = env.reset(), 0, False, 1, 0, 0
epoch_losses, epoch_rets, epoch_lens, epoch_qs = [], [], [], []
total_steps = n_epochs * steps_per_epoch + steps_before_training
for t in range(total_steps):
act = get_action(obs, epsilon)
next_obs, rew, done, _ = env.step(act)
replay_buffer.store(obs, act, rew, next_obs, done)
obs = next_obs
ep_ret += rew
ep_len += 1
if done:
epoch_rets.append(ep_ret)
epoch_lens.append(ep_len)
obs, rew, done, ep_ret, ep_len = env.reset(), 0, False, 0, 0
if t > steps_before_training:
batch = replay_buffer.sample_batch(batch_size)
feed_dict = {obs_ph: batch['obs1'],
obs_targ_ph: batch['obs2'],
act_ph: batch['acts'],
rew_ph: batch['rews'],
done_ph: batch['done']
}
step_loss, cur_q, _ = sess.run([loss, q_vals, train_op], feed_dict=feed_dict)
epoch_losses.append(step_loss)
epoch_qs.append(cur_q)
if t % target_update_freq == 0:
sess.run(target_update_op)
epsilon = 1 + (final_epsilon - 1)*min(1, t/finish_decay)
# at the end of each epoch, evaluate the agent
if (t - steps_before_training) % steps_per_epoch == 0 and (t - steps_before_training)>0:
epoch = (t - steps_before_training) // steps_per_epoch
test_ep_ret, test_ep_len = test_q()
print(('epoch: %d \t loss: %.3f \t train_ret: %.3f' \
+ '\t train_len: %.3f \t test_ret: %.3f \t test_len: %.3f ' \
+ '\t mean q: %.3f \t epsilon: %.3f')%
(epoch, np.mean(epoch_losses), np.mean(epoch_rets),
np.mean(epoch_lens), test_ep_ret, test_ep_len,
np.mean(epoch_qs), epsilon))
epoch_losses, epoch_rets, epoch_lens, epoch_qs = [], [], [], []
if __name__ == '__main__':
train()