-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvideostab.cpp
258 lines (191 loc) · 7.81 KB
/
videostab.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
#include <opencv2/opencv.hpp>
#include <iostream>
#include <cassert>
#include <cmath>
#include <fstream>
using namespace std;
using namespace cv;
// This video stablisation smooths the global trajectory using a sliding average window
const int SMOOTHING_RADIUS = 30; // In frames. The larger the more stable the video, but less reactive to sudden panning
const int HORIZONTAL_BORDER_CROP = 20; // In pixels. Crops the border to reduce the black borders from stabilisation being too noticeable.
// 1. Get previous to current frame transformation (dx, dy, da) for all frames
// 2. Accumulate the transformations to get the image trajectory
// 3. Smooth out the trajectory using an averaging window
// 4. Generate new set of previous to current transform, such that the trajectory ends up being the same as the smoothed trajectory
// 5. Apply the new transformation to the video
struct TransformParam
{
TransformParam() {}
TransformParam(double _dx, double _dy, double _da) {
dx = _dx;
dy = _dy;
da = _da;
}
double dx;
double dy;
double da; // angle
};
struct Trajectory
{
Trajectory() {}
Trajectory(double _x, double _y, double _a) {
x = _x;
y = _y;
a = _a;
}
double x;
double y;
double a; // angle
};
int main(int argc, char **argv)
{
if(argc < 2) {
cout << "./VideoStab [video.avi]" << endl;
return 0;
}
// For further analysis
ofstream out_transform("prev_to_cur_transformation.txt");
ofstream out_trajectory("trajectory.txt");
ofstream out_smoothed_trajectory("smoothed_trajectory.txt");
ofstream out_new_transform("new_prev_to_cur_transformation.txt");
VideoCapture cap(argv[1]);
assert(cap.isOpened());
Mat cur, cur_grey;
Mat prev, prev_grey;
cap >> prev;
cvtColor(prev, prev_grey, COLOR_BGR2GRAY);
// Step 1 - Get previous to current frame transformation (dx, dy, da) for all frames
vector <TransformParam> prev_to_cur_transform; // previous to current
int k=1;
int max_frames = cap.get(CV_CAP_PROP_FRAME_COUNT);
Mat last_T;
while(true) {
cap >> cur;
if(cur.data == NULL) {
break;
}
cvtColor(cur, cur_grey, COLOR_BGR2GRAY);
// vector from prev to cur
vector <Point2f> prev_corner, cur_corner;
vector <Point2f> prev_corner2, cur_corner2;
vector <uchar> status;
vector <float> err;
goodFeaturesToTrack(prev_grey, prev_corner, 200, 0.01, 30);
calcOpticalFlowPyrLK(prev_grey, cur_grey, prev_corner, cur_corner, status, err);
// weed out bad matches
for(size_t i=0; i < status.size(); i++) {
if(status[i]) {
prev_corner2.push_back(prev_corner[i]);
cur_corner2.push_back(cur_corner[i]);
}
}
// translation + rotation only
Mat T = estimateRigidTransform(prev_corner2, cur_corner2, false); // false = rigid transform, no scaling/shearing
// in rare cases no transform is found. We'll just use the last known good transform.
if(T.data == NULL) {
last_T.copyTo(T);
}
T.copyTo(last_T);
// decompose T
double dx = T.at<double>(0,2);
double dy = T.at<double>(1,2);
double da = atan2(T.at<double>(1,0), T.at<double>(0,0));
prev_to_cur_transform.push_back(TransformParam(dx, dy, da));
out_transform << k << " " << dx << " " << dy << " " << da << endl;
cur.copyTo(prev);
cur_grey.copyTo(prev_grey);
cout << "Frame: " << k << "/" << max_frames << " - good optical flow: " << prev_corner2.size() << endl;
k++;
}
// Step 2 - Accumulate the transformations to get the image trajectory
// Accumulated frame to frame transform
double a = 0;
double x = 0;
double y = 0;
vector <Trajectory> trajectory; // trajectory at all frames
for(size_t i=0; i < prev_to_cur_transform.size(); i++) {
x += prev_to_cur_transform[i].dx;
y += prev_to_cur_transform[i].dy;
a += prev_to_cur_transform[i].da;
trajectory.push_back(Trajectory(x,y,a));
out_trajectory << (i+1) << " " << x << " " << y << " " << a << endl;
}
// Step 3 - Smooth out the trajectory using an averaging window
vector <Trajectory> smoothed_trajectory; // trajectory at all frames
for(size_t i=0; i < trajectory.size(); i++) {
double sum_x = 0;
double sum_y = 0;
double sum_a = 0;
int count = 0;
for(int j=-SMOOTHING_RADIUS; j <= SMOOTHING_RADIUS; j++) {
if(i+j >= 0 && i+j < trajectory.size()) {
sum_x += trajectory[i+j].x;
sum_y += trajectory[i+j].y;
sum_a += trajectory[i+j].a;
count++;
}
}
double avg_a = sum_a / count;
double avg_x = sum_x / count;
double avg_y = sum_y / count;
smoothed_trajectory.push_back(Trajectory(avg_x, avg_y, avg_a));
out_smoothed_trajectory << (i+1) << " " << avg_x << " " << avg_y << " " << avg_a << endl;
}
// Step 4 - Generate new set of previous to current transform, such that the trajectory ends up being the same as the smoothed trajectory
vector <TransformParam> new_prev_to_cur_transform;
// Accumulated frame to frame transform
a = 0;
x = 0;
y = 0;
for(size_t i=0; i < prev_to_cur_transform.size(); i++) {
x += prev_to_cur_transform[i].dx;
y += prev_to_cur_transform[i].dy;
a += prev_to_cur_transform[i].da;
// target - current
double diff_x = smoothed_trajectory[i].x - x;
double diff_y = smoothed_trajectory[i].y - y;
double diff_a = smoothed_trajectory[i].a - a;
double dx = prev_to_cur_transform[i].dx + diff_x;
double dy = prev_to_cur_transform[i].dy + diff_y;
double da = prev_to_cur_transform[i].da + diff_a;
new_prev_to_cur_transform.push_back(TransformParam(dx, dy, da));
out_new_transform << (i+1) << " " << dx << " " << dy << " " << da << endl;
}
// Step 5 - Apply the new transformation to the video
cap.set(CV_CAP_PROP_POS_FRAMES, 0);
Mat T(2,3,CV_64F);
int vert_border = HORIZONTAL_BORDER_CROP * prev.rows / prev.cols; // get the aspect ratio correct
k=0;
while(k < max_frames-1) { // don't process the very last frame, no valid transform
cap >> cur;
if(cur.data == NULL) {
break;
}
T.at<double>(0,0) = cos(new_prev_to_cur_transform[k].da);
T.at<double>(0,1) = -sin(new_prev_to_cur_transform[k].da);
T.at<double>(1,0) = sin(new_prev_to_cur_transform[k].da);
T.at<double>(1,1) = cos(new_prev_to_cur_transform[k].da);
T.at<double>(0,2) = new_prev_to_cur_transform[k].dx;
T.at<double>(1,2) = new_prev_to_cur_transform[k].dy;
Mat cur2;
warpAffine(cur, cur2, T, cur.size());
cur2 = cur2(Range(vert_border, cur2.rows-vert_border), Range(HORIZONTAL_BORDER_CROP, cur2.cols-HORIZONTAL_BORDER_CROP));
// Resize cur2 back to cur size, for better side by side comparison
resize(cur2, cur2, cur.size());
// Now draw the original and stablised side by side for coolness
Mat canvas = Mat::zeros(cur.rows, cur.cols*2+10, cur.type());
cur.copyTo(canvas(Range::all(), Range(0, cur2.cols)));
cur2.copyTo(canvas(Range::all(), Range(cur2.cols+10, cur2.cols*2+10)));
// If too big to fit on the screen, then scale it down by 2, hopefully it'll fit :)
if(canvas.cols > 1920) {
resize(canvas, canvas, Size(canvas.cols/2, canvas.rows/2));
}
imshow("before and after", canvas);
//char str[256];
//sprintf(str, "images/%08d.jpg", k);
//imwrite(str, canvas);
waitKey(20);
k++;
}
return 0;
}