Skip to content

Commit e02348f

Browse files
authored
Add files via upload
1 parent adfa16e commit e02348f

File tree

1 file changed

+160
-0
lines changed

1 file changed

+160
-0
lines changed
+160
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,160 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "code",
5+
"execution_count": 1,
6+
"metadata": {},
7+
"outputs": [],
8+
"source": [
9+
"import cv2\n",
10+
"import numpy as np\n",
11+
"import matplotlib.pyplot as plt\n",
12+
"\n",
13+
"#auther - Jay Shankar Bhatt \n",
14+
"# using this code without author's permission other then leaning task is strictly prohibited"
15+
]
16+
},
17+
{
18+
"cell_type": "code",
19+
"execution_count": 2,
20+
"metadata": {},
21+
"outputs": [],
22+
"source": [
23+
"## provide the path for testing cofing file and tained model form colab\n",
24+
"net = cv2.dnn.readNetFromDarknet(\"yolov3_custom.cfg\",r\"Downloads\\yolov3_custom_6000.weights\")"
25+
]
26+
},
27+
{
28+
"cell_type": "code",
29+
"execution_count": 3,
30+
"metadata": {},
31+
"outputs": [],
32+
"source": [
33+
"### Change here for custom classes for trained model \n",
34+
"\n",
35+
"classes = ['Elon_Musk','Barak_obama','Mark_Zuckerberg']"
36+
]
37+
},
38+
{
39+
"cell_type": "code",
40+
"execution_count": 4,
41+
"metadata": {},
42+
"outputs": [],
43+
"source": [
44+
"cap = cv2.VideoCapture(0)\n",
45+
"\n",
46+
"while 1:\n",
47+
" _, img = cap.read()\n",
48+
" img = cv2.resize(img,(1280,720))\n",
49+
" hight,width,_ = img.shape\n",
50+
" blob = cv2.dnn.blobFromImage(img, 1/255,(416,416),(0,0,0),swapRB = True,crop= False)\n",
51+
"\n",
52+
" net.setInput(blob)\n",
53+
"\n",
54+
" output_layers_name = net.getUnconnectedOutLayersNames()\n",
55+
"\n",
56+
" layerOutputs = net.forward(output_layers_name)\n",
57+
"\n",
58+
" boxes =[]\n",
59+
" confidences = []\n",
60+
" class_ids = []\n",
61+
"\n",
62+
" for output in layerOutputs:\n",
63+
" for detection in output:\n",
64+
" score = detection[5:]\n",
65+
" class_id = np.argmax(score)\n",
66+
" confidence = score[class_id]\n",
67+
" if confidence > 0.7:\n",
68+
" center_x = int(detection[0] * width)\n",
69+
" center_y = int(detection[1] * hight)\n",
70+
" w = int(detection[2] * width)\n",
71+
" h = int(detection[3]* hight)\n",
72+
" x = int(center_x - w/2)\n",
73+
" y = int(center_y - h/2)\n",
74+
" boxes.append([x,y,w,h])\n",
75+
" confidences.append((float(confidence)))\n",
76+
" class_ids.append(class_id)\n",
77+
"\n",
78+
"\n",
79+
" indexes = cv2.dnn.NMSBoxes(boxes,confidences,.5,.4)\n",
80+
"\n",
81+
" boxes =[]\n",
82+
" confidences = []\n",
83+
" class_ids = []\n",
84+
"\n",
85+
" for output in layerOutputs:\n",
86+
" for detection in output:\n",
87+
" score = detection[5:]\n",
88+
" class_id = np.argmax(score)\n",
89+
" confidence = score[class_id]\n",
90+
" if confidence > 0.5:\n",
91+
" center_x = int(detection[0] * width)\n",
92+
" center_y = int(detection[1] * hight)\n",
93+
" w = int(detection[2] * width)\n",
94+
" h = int(detection[3]* hight)\n",
95+
"\n",
96+
" x = int(center_x - w/2)\n",
97+
" y = int(center_y - h/2)\n",
98+
"\n",
99+
"\n",
100+
"\n",
101+
" boxes.append([x,y,w,h])\n",
102+
" confidences.append((float(confidence)))\n",
103+
" class_ids.append(class_id)\n",
104+
"\n",
105+
" indexes = cv2.dnn.NMSBoxes(boxes,confidences,.8,.4)\n",
106+
" font = cv2.FONT_HERSHEY_PLAIN\n",
107+
" colors = np.random.uniform(0,255,size =(len(boxes),3))\n",
108+
" if len(indexes)>0:\n",
109+
" for i in indexes.flatten():\n",
110+
" x,y,w,h = boxes[i]\n",
111+
" label = str(classes[class_ids[i]])\n",
112+
" confidence = str(round(confidences[i],2))\n",
113+
" color = colors[i]\n",
114+
" cv2.rectangle(img,(x,y),(x+w,y+h),color,2)\n",
115+
" cv2.putText(img,label + \" \" + confidence, (x,y+400),font,2,color,2)\n",
116+
"\n",
117+
" cv2.imshow('img',img)\n",
118+
" if cv2.waitKey(1) == ord('q'):\n",
119+
" break\n",
120+
" \n",
121+
"cap.release()\n",
122+
"cv2.destroyAllWindows()"
123+
]
124+
}
125+
],
126+
"metadata": {
127+
"kernelspec": {
128+
"display_name": "Python 3",
129+
"language": "python",
130+
"name": "python3"
131+
},
132+
"language_info": {
133+
"codemirror_mode": {
134+
"name": "ipython",
135+
"version": 3
136+
},
137+
"file_extension": ".py",
138+
"mimetype": "text/x-python",
139+
"name": "python",
140+
"nbconvert_exporter": "python",
141+
"pygments_lexer": "ipython3",
142+
"version": "3.7.6"
143+
},
144+
"toc": {
145+
"base_numbering": 1,
146+
"nav_menu": {},
147+
"number_sections": true,
148+
"sideBar": true,
149+
"skip_h1_title": false,
150+
"title_cell": "Table of Contents",
151+
"title_sidebar": "Contents",
152+
"toc_cell": false,
153+
"toc_position": {},
154+
"toc_section_display": true,
155+
"toc_window_display": false
156+
}
157+
},
158+
"nbformat": 4,
159+
"nbformat_minor": 2
160+
}

0 commit comments

Comments
 (0)