|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "import cv2\n", |
| 10 | + "import numpy as np\n", |
| 11 | + "import matplotlib.pyplot as plt\n", |
| 12 | + "\n", |
| 13 | + "#auther - Jay Shankar Bhatt \n", |
| 14 | + "# using this code without author's permission other then leaning task is strictly prohibited" |
| 15 | + ] |
| 16 | + }, |
| 17 | + { |
| 18 | + "cell_type": "code", |
| 19 | + "execution_count": 2, |
| 20 | + "metadata": {}, |
| 21 | + "outputs": [], |
| 22 | + "source": [ |
| 23 | + "## provide the path for testing cofing file and tained model form colab\n", |
| 24 | + "net = cv2.dnn.readNetFromDarknet(\"yolov3_custom.cfg\",r\"Downloads\\yolov3_custom_6000.weights\")" |
| 25 | + ] |
| 26 | + }, |
| 27 | + { |
| 28 | + "cell_type": "code", |
| 29 | + "execution_count": 3, |
| 30 | + "metadata": {}, |
| 31 | + "outputs": [], |
| 32 | + "source": [ |
| 33 | + "### Change here for custom classes for trained model \n", |
| 34 | + "\n", |
| 35 | + "classes = ['Elon_Musk','Barak_obama','Mark_Zuckerberg']" |
| 36 | + ] |
| 37 | + }, |
| 38 | + { |
| 39 | + "cell_type": "code", |
| 40 | + "execution_count": 4, |
| 41 | + "metadata": {}, |
| 42 | + "outputs": [], |
| 43 | + "source": [ |
| 44 | + "cap = cv2.VideoCapture(0)\n", |
| 45 | + "\n", |
| 46 | + "while 1:\n", |
| 47 | + " _, img = cap.read()\n", |
| 48 | + " img = cv2.resize(img,(1280,720))\n", |
| 49 | + " hight,width,_ = img.shape\n", |
| 50 | + " blob = cv2.dnn.blobFromImage(img, 1/255,(416,416),(0,0,0),swapRB = True,crop= False)\n", |
| 51 | + "\n", |
| 52 | + " net.setInput(blob)\n", |
| 53 | + "\n", |
| 54 | + " output_layers_name = net.getUnconnectedOutLayersNames()\n", |
| 55 | + "\n", |
| 56 | + " layerOutputs = net.forward(output_layers_name)\n", |
| 57 | + "\n", |
| 58 | + " boxes =[]\n", |
| 59 | + " confidences = []\n", |
| 60 | + " class_ids = []\n", |
| 61 | + "\n", |
| 62 | + " for output in layerOutputs:\n", |
| 63 | + " for detection in output:\n", |
| 64 | + " score = detection[5:]\n", |
| 65 | + " class_id = np.argmax(score)\n", |
| 66 | + " confidence = score[class_id]\n", |
| 67 | + " if confidence > 0.7:\n", |
| 68 | + " center_x = int(detection[0] * width)\n", |
| 69 | + " center_y = int(detection[1] * hight)\n", |
| 70 | + " w = int(detection[2] * width)\n", |
| 71 | + " h = int(detection[3]* hight)\n", |
| 72 | + " x = int(center_x - w/2)\n", |
| 73 | + " y = int(center_y - h/2)\n", |
| 74 | + " boxes.append([x,y,w,h])\n", |
| 75 | + " confidences.append((float(confidence)))\n", |
| 76 | + " class_ids.append(class_id)\n", |
| 77 | + "\n", |
| 78 | + "\n", |
| 79 | + " indexes = cv2.dnn.NMSBoxes(boxes,confidences,.5,.4)\n", |
| 80 | + "\n", |
| 81 | + " boxes =[]\n", |
| 82 | + " confidences = []\n", |
| 83 | + " class_ids = []\n", |
| 84 | + "\n", |
| 85 | + " for output in layerOutputs:\n", |
| 86 | + " for detection in output:\n", |
| 87 | + " score = detection[5:]\n", |
| 88 | + " class_id = np.argmax(score)\n", |
| 89 | + " confidence = score[class_id]\n", |
| 90 | + " if confidence > 0.5:\n", |
| 91 | + " center_x = int(detection[0] * width)\n", |
| 92 | + " center_y = int(detection[1] * hight)\n", |
| 93 | + " w = int(detection[2] * width)\n", |
| 94 | + " h = int(detection[3]* hight)\n", |
| 95 | + "\n", |
| 96 | + " x = int(center_x - w/2)\n", |
| 97 | + " y = int(center_y - h/2)\n", |
| 98 | + "\n", |
| 99 | + "\n", |
| 100 | + "\n", |
| 101 | + " boxes.append([x,y,w,h])\n", |
| 102 | + " confidences.append((float(confidence)))\n", |
| 103 | + " class_ids.append(class_id)\n", |
| 104 | + "\n", |
| 105 | + " indexes = cv2.dnn.NMSBoxes(boxes,confidences,.8,.4)\n", |
| 106 | + " font = cv2.FONT_HERSHEY_PLAIN\n", |
| 107 | + " colors = np.random.uniform(0,255,size =(len(boxes),3))\n", |
| 108 | + " if len(indexes)>0:\n", |
| 109 | + " for i in indexes.flatten():\n", |
| 110 | + " x,y,w,h = boxes[i]\n", |
| 111 | + " label = str(classes[class_ids[i]])\n", |
| 112 | + " confidence = str(round(confidences[i],2))\n", |
| 113 | + " color = colors[i]\n", |
| 114 | + " cv2.rectangle(img,(x,y),(x+w,y+h),color,2)\n", |
| 115 | + " cv2.putText(img,label + \" \" + confidence, (x,y+400),font,2,color,2)\n", |
| 116 | + "\n", |
| 117 | + " cv2.imshow('img',img)\n", |
| 118 | + " if cv2.waitKey(1) == ord('q'):\n", |
| 119 | + " break\n", |
| 120 | + " \n", |
| 121 | + "cap.release()\n", |
| 122 | + "cv2.destroyAllWindows()" |
| 123 | + ] |
| 124 | + } |
| 125 | + ], |
| 126 | + "metadata": { |
| 127 | + "kernelspec": { |
| 128 | + "display_name": "Python 3", |
| 129 | + "language": "python", |
| 130 | + "name": "python3" |
| 131 | + }, |
| 132 | + "language_info": { |
| 133 | + "codemirror_mode": { |
| 134 | + "name": "ipython", |
| 135 | + "version": 3 |
| 136 | + }, |
| 137 | + "file_extension": ".py", |
| 138 | + "mimetype": "text/x-python", |
| 139 | + "name": "python", |
| 140 | + "nbconvert_exporter": "python", |
| 141 | + "pygments_lexer": "ipython3", |
| 142 | + "version": "3.7.6" |
| 143 | + }, |
| 144 | + "toc": { |
| 145 | + "base_numbering": 1, |
| 146 | + "nav_menu": {}, |
| 147 | + "number_sections": true, |
| 148 | + "sideBar": true, |
| 149 | + "skip_h1_title": false, |
| 150 | + "title_cell": "Table of Contents", |
| 151 | + "title_sidebar": "Contents", |
| 152 | + "toc_cell": false, |
| 153 | + "toc_position": {}, |
| 154 | + "toc_section_display": true, |
| 155 | + "toc_window_display": false |
| 156 | + } |
| 157 | + }, |
| 158 | + "nbformat": 4, |
| 159 | + "nbformat_minor": 2 |
| 160 | +} |
0 commit comments