Skip to content

Commit 90deb34

Browse files
committed
Qualified import of PropositionalEquality fixing agda#2280
1 parent dfd57bd commit 90deb34

File tree

25 files changed

+226
-226
lines changed

25 files changed

+226
-226
lines changed

src/Algebra/Lattice/Properties/BooleanAlgebra/Expression.agda

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@ open import Data.Vec.Properties using (lookup-map)
2626
open import Data.Vec.Relation.Binary.Pointwise.Extensional as PW
2727
using (Pointwise; ext)
2828
open import Function.Base using (_∘_; _$_; flip)
29-
open import Relation.Binary.PropositionalEquality as P using (_≗_)
29+
open import Relation.Binary.PropositionalEquality as using (_≗_)
3030
import Relation.Binary.Reflection as Reflection
3131

3232
-- Expressions made up of variables and the operations of a boolean
@@ -68,7 +68,7 @@ module Naturality
6868
(f : Applicative.Morphism A₁ A₂)
6969
where
7070

71-
open P.≡-Reasoning
71+
open .≡-Reasoning
7272
open Applicative.Morphism f
7373
open Semantics A₁ renaming (⟦_⟧ to ⟦_⟧₁)
7474
open Semantics A₂ renaming (⟦_⟧ to ⟦_⟧₂)
@@ -77,21 +77,21 @@ module Naturality
7777

7878
natural : {n} (e : Expr n) op ∘ ⟦ e ⟧₁ ≗ ⟦ e ⟧₂ ∘ Vec.map op
7979
natural (var x) ρ = begin
80-
op (Vec.lookup ρ x) ≡⟨ P.sym $ lookup-map x op ρ ⟩
80+
op (Vec.lookup ρ x) ≡⟨ .sym $ lookup-map x op ρ ⟩
8181
Vec.lookup (Vec.map op ρ) x ∎
8282
natural (e₁ or e₂) ρ = begin
8383
op (_∨_ <$>₁ ⟦ e₁ ⟧₁ ρ ⊛₁ ⟦ e₂ ⟧₁ ρ) ≡⟨ op-⊛ _ _ ⟩
84-
op (_∨_ <$>₁ ⟦ e₁ ⟧₁ ρ) ⊛₂ op (⟦ e₂ ⟧₁ ρ) ≡⟨ P.cong₂ _⊛₂_ (op-<$> _ _) P.refl ⟩
85-
_∨_ <$>₂ op (⟦ e₁ ⟧₁ ρ) ⊛₂ op (⟦ e₂ ⟧₁ ρ) ≡⟨ P.cong₂ (λ e₁ e₂ _∨_ <$>₂ e₁ ⊛₂ e₂) (natural e₁ ρ) (natural e₂ ρ) ⟩
84+
op (_∨_ <$>₁ ⟦ e₁ ⟧₁ ρ) ⊛₂ op (⟦ e₂ ⟧₁ ρ) ≡⟨ .cong₂ _⊛₂_ (op-<$> _ _) .refl ⟩
85+
_∨_ <$>₂ op (⟦ e₁ ⟧₁ ρ) ⊛₂ op (⟦ e₂ ⟧₁ ρ) ≡⟨ .cong₂ (λ e₁ e₂ _∨_ <$>₂ e₁ ⊛₂ e₂) (natural e₁ ρ) (natural e₂ ρ) ⟩
8686
_∨_ <$>₂ ⟦ e₁ ⟧₂ (Vec.map op ρ) ⊛₂ ⟦ e₂ ⟧₂ (Vec.map op ρ) ∎
8787
natural (e₁ and e₂) ρ = begin
8888
op (_∧_ <$>₁ ⟦ e₁ ⟧₁ ρ ⊛₁ ⟦ e₂ ⟧₁ ρ) ≡⟨ op-⊛ _ _ ⟩
89-
op (_∧_ <$>₁ ⟦ e₁ ⟧₁ ρ) ⊛₂ op (⟦ e₂ ⟧₁ ρ) ≡⟨ P.cong₂ _⊛₂_ (op-<$> _ _) P.refl ⟩
90-
_∧_ <$>₂ op (⟦ e₁ ⟧₁ ρ) ⊛₂ op (⟦ e₂ ⟧₁ ρ) ≡⟨ P.cong₂ (λ e₁ e₂ _∧_ <$>₂ e₁ ⊛₂ e₂) (natural e₁ ρ) (natural e₂ ρ) ⟩
89+
op (_∧_ <$>₁ ⟦ e₁ ⟧₁ ρ) ⊛₂ op (⟦ e₂ ⟧₁ ρ) ≡⟨ .cong₂ _⊛₂_ (op-<$> _ _) .refl ⟩
90+
_∧_ <$>₂ op (⟦ e₁ ⟧₁ ρ) ⊛₂ op (⟦ e₂ ⟧₁ ρ) ≡⟨ .cong₂ (λ e₁ e₂ _∧_ <$>₂ e₁ ⊛₂ e₂) (natural e₁ ρ) (natural e₂ ρ) ⟩
9191
_∧_ <$>₂ ⟦ e₁ ⟧₂ (Vec.map op ρ) ⊛₂ ⟦ e₂ ⟧₂ (Vec.map op ρ) ∎
9292
natural (not e) ρ = begin
9393
op (¬_ <$>₁ ⟦ e ⟧₁ ρ) ≡⟨ op-<$> _ _ ⟩
94-
¬_ <$>₂ op (⟦ e ⟧₁ ρ) ≡⟨ P.cong (¬_ <$>₂_) (natural e ρ) ⟩
94+
¬_ <$>₂ op (⟦ e ⟧₁ ρ) ≡⟨ .cong (¬_ <$>₂_) (natural e ρ) ⟩
9595
¬_ <$>₂ ⟦ e ⟧₂ (Vec.map op ρ) ∎
9696
natural top ρ = begin
9797
op (pure₁ ⊤) ≡⟨ op-pure _ ⟩

src/Algebra/Properties/Monoid/Sum.agda

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@ open import Data.Fin.Base using (zero; suc)
1313
open import Data.Unit using (tt)
1414
open import Function.Base using (_∘_)
1515
open import Relation.Binary.Core using (_Preserves_⟶_)
16-
open import Relation.Binary.PropositionalEquality as P using (_≗_; _≡_)
16+
open import Relation.Binary.PropositionalEquality as using (_≗_; _≡_)
1717

1818
module Algebra.Properties.Monoid.Sum {a ℓ} (M : Monoid a ℓ) where
1919

@@ -61,8 +61,8 @@ sum-cong-≋ {zero} xs≋ys = refl
6161
sum-cong-≋ {suc n} xs≋ys = +-cong (xs≋ys zero) (sum-cong-≋ (xs≋ys ∘ suc))
6262

6363
sum-cong-≗ : {n} sum {n} Preserves _≗_ ⟶ _≡_
64-
sum-cong-≗ {zero} xs≗ys = P.refl
65-
sum-cong-≗ {suc n} xs≗ys = P.cong₂ _+_ (xs≗ys zero) (sum-cong-≗ (xs≗ys ∘ suc))
64+
sum-cong-≗ {zero} xs≗ys = .refl
65+
sum-cong-≗ {suc n} xs≗ys = .cong₂ _+_ (xs≗ys zero) (sum-cong-≗ (xs≗ys ∘ suc))
6666

6767
sum-replicate : n {x} sum (replicate n x) ≈ n × x
6868
sum-replicate zero = refl

src/Codata/Musical/Colist.agda

Lines changed: 11 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -33,7 +33,7 @@ open import Relation.Binary.Definitions using (Transitive; Antisymmetric)
3333
import Relation.Binary.Construct.FromRel as Ind
3434
import Relation.Binary.Reasoning.Preorder as ≲-Reasoning
3535
import Relation.Binary.Reasoning.PartialOrder as ≤-Reasoning
36-
open import Relation.Binary.PropositionalEquality as P using (_≡_)
36+
open import Relation.Binary.PropositionalEquality as using (_≡_)
3737
open import Relation.Binary.Reasoning.Syntax
3838
open import Relation.Nullary.Reflects using (invert)
3939
open import Relation.Nullary
@@ -107,23 +107,23 @@ Any-∈ {P = P} = mk↔ₛ′
107107
from∘to
108108
where
109109
to : {xs} Any P xs λ x x ∈ xs × P x
110-
to (here p) = _ , here P.refl , p
110+
to (here p) = _ , here .refl , p
111111
to (there p) = Product.map id (Product.map there id) (to p)
112112

113113
from : {x xs} x ∈ xs P x Any P xs
114-
from (here P.refl) p = here p
114+
from (here .refl) p = here p
115115
from (there x∈xs) p = there (from x∈xs p)
116116

117117
to∘from : {x xs} (x∈xs : x ∈ xs) (p : P x)
118118
to (from x∈xs p) ≡ (x , x∈xs , p)
119-
to∘from (here P.refl) p = P.refl
119+
to∘from (here .refl) p = .refl
120120
to∘from (there x∈xs) p =
121-
P.cong (Product.map id (Product.map there id)) (to∘from x∈xs p)
121+
.cong (Product.map id (Product.map there id)) (to∘from x∈xs p)
122122

123123
from∘to : {xs} (p : Any P xs)
124124
let (x , x∈xs , px) = to p in from x∈xs px ≡ p
125-
from∘to (here _) = P.refl
126-
from∘to (there p) = P.cong there (from∘to p)
125+
from∘to (here _) = .refl
126+
from∘to (there p) = .cong there (from∘to p)
127127

128128
-- Prefixes are subsets.
129129

@@ -176,8 +176,8 @@ module ⊑-Reasoning {a} {A : Set a} where
176176

177177
⊆-Preorder : {ℓ} Set Preorder _ _ _
178178
⊆-Preorder A = Ind.preorder (setoid A) _∈_
179-
(λ xs≈ys ⊑⇒⊆ (⊑P.reflexive xs≈ys))
180-
where module P = Poset (⊑-Poset A)
179+
(λ xs≈ys ⊑⇒⊆ (⊑A.reflexive xs≈ys))
180+
where module A = Poset (⊑-Poset A)
181181

182182
-- Example uses:
183183
--
@@ -220,7 +220,7 @@ infixr 5 _∷_
220220
module Finite-injective where
221221

222222
∷-injective : {x : A} {xs p q} (Finite (x ∷ xs) ∋ x ∷ p) ≡ x ∷ q p ≡ q
223-
∷-injective P.refl = P.refl
223+
∷-injective .refl = .refl
224224

225225
-- Infinite xs means that xs has infinite length.
226226

@@ -230,7 +230,7 @@ data Infinite {A : Set a} : Colist A → Set a where
230230
module Infinite-injective where
231231

232232
∷-injective : {x : A} {xs p q} (Infinite (x ∷ xs) ∋ x ∷ p) ≡ x ∷ q p ≡ q
233-
∷-injective P.refl = P.refl
233+
∷-injective .refl = .refl
234234

235235
-- Colists which are not finite are infinite.
236236

src/Codata/Musical/Colist/Relation/Unary/Any/Properties.agda

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,7 @@ open import Function.Base using (_∋_; _∘_)
2121
open import Function.Bundles
2222
open import Level using (Level; _⊔_)
2323
open import Relation.Binary.Bundles using (Setoid)
24-
open import Relation.Binary.PropositionalEquality as P
24+
open import Relation.Binary.PropositionalEquality as
2525
using (_≡_; refl; cong)
2626
open import Relation.Unary using (Pred)
2727

@@ -66,15 +66,15 @@ Any-cong {A = A} {P} {Q} {xs} {ys} P↔Q xs≈ys =
6666

6767
to∘from : {xs ys} (xs≈ys : xs ≈ ys) (q : Any Q ys)
6868
to xs≈ys (from xs≈ys q) ≡ q
69-
to∘from (x ∷ xs≈) (there q) = P.cong there (to∘from (♭ xs≈) q)
69+
to∘from (x ∷ xs≈) (there q) = .cong there (to∘from (♭ xs≈) q)
7070
to∘from (x ∷ xs≈) (here qx) =
71-
P.cong here (Inverse.strictlyInverseˡ P↔Q qx)
71+
.cong here (Inverse.strictlyInverseˡ P↔Q qx)
7272

7373
from∘to : {xs ys} (xs≈ys : xs ≈ ys) (p : Any P xs)
7474
from xs≈ys (to xs≈ys p) ≡ p
75-
from∘to (x ∷ xs≈) (there p) = P.cong there (from∘to (♭ xs≈) p)
75+
from∘to (x ∷ xs≈) (there p) = .cong there (from∘to (♭ xs≈) p)
7676
from∘to (x ∷ xs≈) (here px) =
77-
P.cong here (Inverse.strictlyInverseʳ P↔Q px)
77+
.cong here (Inverse.strictlyInverseʳ P↔Q px)
7878

7979
------------------------------------------------------------------------
8080
-- map
@@ -164,7 +164,7 @@ lookup-index (there p) = lookup-index p
164164
index-Any-resp : {f : {x} P x Q x} {xs ys}
165165
(xs≈ys : xs ≈ ys) (p : Any P xs)
166166
index (Any-resp f xs≈ys p) ≡ index p
167-
index-Any-resp (x ∷ xs≈) (here px) = P.refl
167+
index-Any-resp (x ∷ xs≈) (here px) = .refl
168168
index-Any-resp (x ∷ xs≈) (there p) =
169169
cong suc (index-Any-resp (♭ xs≈) p)
170170

src/Data/Container/Combinator/Properties.agda

Lines changed: 12 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,7 @@ open import Data.Sum.Base as S using (inj₁; inj₂; [_,_]′; [_,_])
1818
open import Function.Base as F using (_∘′_)
1919
open import Function.Bundles
2020
open import Level using (_⊔_; lower)
21-
open import Relation.Binary.PropositionalEquality as P using (_≡_; _≗_)
21+
open import Relation.Binary.PropositionalEquality as using (_≡_; _≗_)
2222

2323
-- I have proved some of the correctness statements under the
2424
-- assumption of functional extensionality. I could have reformulated
@@ -27,52 +27,52 @@ open import Relation.Binary.PropositionalEquality as P using (_≡_; _≗_)
2727
module Identity where
2828

2929
correct : {s p x} {X : Set x} ⟦ id {s} {p} ⟧ X ↔ F.id X
30-
correct {X = X} = mk↔ₛ′ from-id to-id (λ _ P.refl) (λ _ P.refl)
30+
correct {X = X} = mk↔ₛ′ from-id to-id (λ _ .refl) (λ _ .refl)
3131

3232
module Constant (ext : {ℓ ℓ′} Extensionality ℓ ℓ′) where
3333

3434
correct : {x p y} (X : Set x) {Y : Set y} ⟦ const {x} {p ⊔ y} X ⟧ Y ↔ F.const X Y
35-
correct {x} {y} X {Y} = mk↔ₛ′ (from-const X) (to-const X) (λ _ P.refl) from∘to
35+
correct {x} {y} X {Y} = mk↔ₛ′ (from-const X) (to-const X) (λ _ .refl) from∘to
3636
where
3737
from∘to : (x : ⟦ const X ⟧ Y) to-const X (proj₁ x) ≡ x
38-
from∘to xs = P.cong (proj₁ xs ,_) (ext (λ x ⊥-elim (lower x)))
38+
from∘to xs = .cong (proj₁ xs ,_) (ext (λ x ⊥-elim (lower x)))
3939

4040
module Composition {s₁ s₂ p₁ p₂} (C₁ : Container s₁ p₁) (C₂ : Container s₂ p₂) where
4141

4242
correct : {x} {X : Set x} ⟦ C₁ ∘ C₂ ⟧ X ↔ (⟦ C₁ ⟧ F.∘ ⟦ C₂ ⟧) X
43-
correct {X = X} = mk↔ₛ′ (from-∘ C₁ C₂) (to-∘ C₁ C₂) (λ _ P.refl) (λ _ P.refl)
43+
correct {X = X} = mk↔ₛ′ (from-∘ C₁ C₂) (to-∘ C₁ C₂) (λ _ .refl) (λ _ .refl)
4444

4545
module Product (ext : {ℓ ℓ′} Extensionality ℓ ℓ′)
4646
{s₁ s₂ p₁ p₂} (C₁ : Container s₁ p₁) (C₂ : Container s₂ p₂) where
4747

4848
correct : {x} {X : Set x} ⟦ C₁ × C₂ ⟧ X ↔ (⟦ C₁ ⟧ X Prod.× ⟦ C₂ ⟧ X)
49-
correct {X = X} = mk↔ₛ′ (from-× C₁ C₂) (to-× C₁ C₂) (λ _ P.refl) from∘to
49+
correct {X = X} = mk↔ₛ′ (from-× C₁ C₂) (to-× C₁ C₂) (λ _ .refl) from∘to
5050
where
5151
from∘to : (to-× C₁ C₂) F.∘ (from-× C₁ C₂) ≗ F.id
5252
from∘to (s , f) =
53-
P.cong (s ,_) (ext [ (λ _ P.refl) , (λ _ P.refl) ])
53+
.cong (s ,_) (ext [ (λ _ .refl) , (λ _ .refl) ])
5454

5555
module IndexedProduct {i s p} {I : Set i} (Cᵢ : I Container s p) where
5656

5757
correct : {x} {X : Set x} ⟦ Π I Cᵢ ⟧ X ↔ ( i ⟦ Cᵢ i ⟧ X)
58-
correct {X = X} = mk↔ₛ′ (from-Π I Cᵢ) (to-Π I Cᵢ) (λ _ P.refl) (λ _ P.refl)
58+
correct {X = X} = mk↔ₛ′ (from-Π I Cᵢ) (to-Π I Cᵢ) (λ _ .refl) (λ _ .refl)
5959

6060
module Sum {s₁ s₂ p} (C₁ : Container s₁ p) (C₂ : Container s₂ p) where
6161

6262
correct : {x} {X : Set x} ⟦ C₁ ⊎ C₂ ⟧ X ↔ (⟦ C₁ ⟧ X S.⊎ ⟦ C₂ ⟧ X)
6363
correct {X = X} = mk↔ₛ′ (from-⊎ C₁ C₂) (to-⊎ C₁ C₂) to∘from from∘to
6464
where
6565
from∘to : (to-⊎ C₁ C₂) F.∘ (from-⊎ C₁ C₂) ≗ F.id
66-
from∘to (inj₁ s₁ , f) = P.refl
67-
from∘to (inj₂ s₂ , f) = P.refl
66+
from∘to (inj₁ s₁ , f) = .refl
67+
from∘to (inj₂ s₂ , f) = .refl
6868

6969
to∘from : (from-⊎ C₁ C₂) F.∘ (to-⊎ C₁ C₂) ≗ F.id
70-
to∘from = [ (λ _ P.refl) , (λ _ P.refl) ]
70+
to∘from = [ (λ _ .refl) , (λ _ .refl) ]
7171

7272
module IndexedSum {i s p} {I : Set i} (C : I Container s p) where
7373

7474
correct : {x} {X : Set x} ⟦ Σ I C ⟧ X ↔ (∃ λ i ⟦ C i ⟧ X)
75-
correct {X = X} = mk↔ₛ′ (from-Σ I C) (to-Σ I C) (λ _ P.refl) (λ _ P.refl)
75+
correct {X = X} = mk↔ₛ′ (from-Σ I C) (to-Σ I C) (λ _ .refl) (λ _ .refl)
7676

7777
module ConstantExponentiation {i s p} {I : Set i} (C : Container s p) where
7878

src/Data/Container/Indexed.agda

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,7 @@ open import Function.Base renaming (id to ⟨id⟩; _∘_ to _⟨∘⟩_)
1818
open import Function using (_↔_; Inverse)
1919
open import Relation.Unary using (Pred; _⊆_)
2020
open import Relation.Binary.Core using (Rel; REL)
21-
open import Relation.Binary.PropositionalEquality as P using (_≡_; _≗_; refl)
21+
open import Relation.Binary.PropositionalEquality as using (_≡_; _≗_; refl)
2222

2323
------------------------------------------------------------------------
2424

@@ -98,7 +98,7 @@ module _ {i₁ i₂ o₁ o₂}
9898
Container I₁ O₁ c₁ r (I₁ I₂) (O₁ O₂)
9999
Container I₂ O₂ c₂ r Set _
100100
C₁ ⇒C[ f / g ] C₂ = ContainerMorphism C₁ C₂ f g _≡_ (λ R₂ R₁ R₂ ≡ R₁)
101-
(λ r₂≡r₁ r₂ P.subst ⟨id⟩ r₂≡r₁ r₂)
101+
(λ r₂≡r₁ r₂ .subst ⟨id⟩ r₂≡r₁ r₂)
102102

103103
-- Degenerate cases where no reindexing is performed.
104104

@@ -123,7 +123,7 @@ module _ {i o c r} {I : Set i} {O : Set o} where
123123
⟪_⟫ : {i o c r ℓ} {I : Set i} {O : Set o} {C₁ C₂ : Container I O c r}
124124
C₁ ⇒ C₂ (X : Pred I ℓ) ⟦ C₁ ⟧ X ⊆ ⟦ C₂ ⟧ X
125125
⟪ m ⟫ X (c , k) = command m c , λ r₂
126-
P.subst X (coherent m) (k (response m r₂))
126+
.subst X (coherent m) (k (response m r₂))
127127

128128
module PlainMorphism {i o c r} {I : Set i} {O : Set o} where
129129

@@ -145,7 +145,7 @@ module PlainMorphism {i o c r} {I : Set i} {O : Set o} where
145145
f ∘ g = record
146146
{ command = command f ⟨∘⟩ command g
147147
; response = response g ⟨∘⟩ response f
148-
; coherent = coherent g ⟨ P.trans ⟩ coherent f
148+
; coherent = coherent g ⟨ .trans ⟩ coherent f
149149
}
150150

151151
-- Identity commutes with ⟪_⟫.
@@ -187,7 +187,7 @@ module CartesianMorphism
187187
morphism : C₁ ⇒ C₂
188188
morphism = record
189189
{ command = command m
190-
; response = P.subst ⟨id⟩ (response m)
190+
; response = .subst ⟨id⟩ (response m)
191191
; coherent = coherent m
192192
}
193193

src/Data/Container/Indexed/Combinator.agda

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,7 @@ open import Function.Indexed.Bundles using (_↔ᵢ_)
2121
open import Level
2222
open import Relation.Unary using (Pred; _⊆_; _∪_; _∩_; ⋃; ⋂)
2323
renaming (_⟨×⟩_ to _⟪×⟫_; _⟨⊙⟩_ to _⟪⊙⟫_; _⟨⊎⟩_ to _⟪⊎⟫_)
24-
open import Relation.Binary.PropositionalEquality as P
24+
open import Relation.Binary.PropositionalEquality as
2525
using (_≗_; refl)
2626

2727
private
@@ -167,7 +167,7 @@ module Constant (ext : ∀ {ℓ} → Extensionality ℓ ℓ) where
167167
from = < F.id , F.const ⊥-elim >
168168

169169
to∘from : _
170-
to∘from xs = P.cong (proj₁ xs ,_) (ext ⊥-elim)
170+
to∘from xs = .cong (proj₁ xs ,_) (ext ⊥-elim)
171171

172172
module Duality where
173173

@@ -202,7 +202,7 @@ module Product (ext : ∀ {ℓ} → Extensionality ℓ ℓ) where
202202

203203
from∘to : from ⟨∘⟩ to ≗ F.id
204204
from∘to (c , _) =
205-
P.cong (c ,_) (ext [ (λ _ refl) , (λ _ refl) ])
205+
.cong (c ,_) (ext [ (λ _ refl) , (λ _ refl) ])
206206

207207
module IndexedProduct where
208208

@@ -231,8 +231,8 @@ module Sum (ext : ∀ {ℓ₁ ℓ₂} → Extensionality ℓ₁ ℓ₂) where
231231
from (inj₂ (c , f)) = inj₂ c , λ{ (All.inj₂ r) f r}
232232

233233
from∘to : from ⟨∘⟩ to ≗ F.id
234-
from∘to (inj₁ _ , _) = P.cong (inj₁ _ ,_) (ext λ{ (All.inj₁ r) refl})
235-
from∘to (inj₂ _ , _) = P.cong (inj₂ _ ,_) (ext λ{ (All.inj₂ r) refl})
234+
from∘to (inj₁ _ , _) = .cong (inj₁ _ ,_) (ext λ{ (All.inj₁ r) refl})
235+
from∘to (inj₂ _ , _) = .cong (inj₂ _ ,_) (ext λ{ (All.inj₂ r) refl})
236236

237237
to∘from : to ⟨∘⟩ from ≗ F.id
238238
to∘from = [ (λ _ refl) , (λ _ refl) ]

src/Data/Container/Morphism/Properties.agda

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@ open import Level using (_⊔_; suc)
1212
open import Function.Base as F using (_$_)
1313
open import Data.Product.Base using (∃; proj₁; proj₂; _,_)
1414
open import Relation.Binary.Bundles using (Setoid)
15-
open import Relation.Binary.PropositionalEquality as P using (_≡_; _≗_)
15+
open import Relation.Binary.PropositionalEquality as using (_≡_; _≗_)
1616

1717
open import Data.Container.Core
1818
open import Data.Container.Morphism
@@ -23,7 +23,7 @@ open import Data.Container.Relation.Binary.Equality.Setoid
2323
module _ {s p} (C : Container s p) where
2424

2525
id-correct : {x} {X : Set x} ⟪ id C ⟫ {X = X} ≗ F.id
26-
id-correct x = P.refl
26+
id-correct x = .refl
2727

2828
-- Composition.
2929

@@ -33,7 +33,7 @@ module _ {s₁ s₂ s₃ p₁ p₂ p₃}
3333

3434
∘-correct : (f : C₂ ⇒ C₃) (g : C₁ ⇒ C₂) {x} {X : Set x}
3535
⟪ f ∘ g ⟫ {X = X} ≗ (⟪ f ⟫ F.∘ ⟪ g ⟫)
36-
∘-correct f g xs = P.refl
36+
∘-correct f g xs = .refl
3737

3838
module _ {s₁ s₂ p₁ p₂} {C₁ : Container s₁ p₁} {C₂ : Container s₂ p₂} where
3939

0 commit comments

Comments
 (0)